Ddr что это такое: Современные типы памяти DDR, DDR2, DDR3 для настольных компьютеров

Содержание

Современные типы памяти DDR, DDR2, DDR3 для настольных компьютеров

В данной статье мы рассмотрим 3 вида современной оперативной памяти для настольных компьютеров:

  • DDR — является самым старым видом оперативной памяти, которую можно еще сегодня купить, но ее рассвет уже прошел, и это самый старый вид оперативной памяти, который мы рассмотрим. Вам придется найти далеко не новые материнские платы и процессоры которые используют этот вид оперативной памяти, хотя множество существующих систем используют DDR оперативную память. Рабочее напряжение DDR — 2.5 вольт (обычно увеличивается при разгоне процессора), и является наибольшим потребителем электроэнергии из рассматриваемых нами 3 видов памяти.
  • DDR2 — это наиболее распространенный вид памяти, который используется в современных компьютерах. Это не самый старый, но и не новейший вид оперативной памяти. DDR2 в общем работает быстрее чем DDR, и поэтому DDR2 имеет скорость передачи данных больше чем в предыдущей модели (самая медленная модель DDR2 по своей скорости равна самой быстрой модели DDR). DDR2 потребляет 1.8 вольт и, как в DDR, обычно увеличивается напряжение при разгоне процессора
  • DDR3 — быстрый и новый тип памяти. Опять же, DDR3 развивает скорость больше чем DDR2, и таким образом самая низкая скорость такая же как и самая быстрая скорость DDR2. DDR3 потребляет электроэнергию меньше других видов оперативной памяти. DDR3 потребляет 1.5 вольт, и немного больше при разгоне процессора
 DDRDDR2DDR3
Номинальная скорость 100-400 400-800 800-1600
Электр. напряжение 2.5v +/- 0.1V 1.8V +/- 0.1V 1.5V +/- 0.075V
Внутр. блоки 4 4 8
Termination ограничено
ограничено
все DQ сигналы
Топология TSOP TSOP or Fly-by Fly-by
Управление OCD калибровка Самокалибровка с ZQ
Термо сенсор Нет Нет Да (необязателный)

Таблица 1: Технические характеристики оперативной памяти по стандартам JEDEC

JEDEC — Joint Electron Device Engineering Council (Объединенный инженерный совет по электронным устройствам)

Важнейшей характеристикой, от которой зависит производительность памяти, является ее пропускная способность, выражающаяся как произведение частоты системной шины на объем данных, передаваемых за один такт. Современная память имеет шину шириной 64 бита (или 8 байт), поэтому пропускная способность памяти типа DDR400, составляет 400 МГц х 8 Байт = 3200 Мбайт в секунду (или 3.2 Гбайт/с). Отсюда, следует и другое обозначение памяти такого типа — PC3200. В последнее время часто используется двухканальное подключение памяти, при котором ее пропускная способность (теоретическая) удваивается. Таким образом, в случае с двумя модулями DDR400 мы получим максимально возможную скорость обмена данных 6.4 Гбайт/с.

Но на максимальную производительность памяти также влияет такие важный параметры как «тайминги памяти».

Известно, что логическая структура банка памяти представляет собой двумерный массив — простейшую матрицу, каждая ячейка которой имеет свой адрес, номер строки и номер столбца. Чтобы считать содержимое произвольной ячейки массива, контроллер памяти должен задать номер строки RAS (Row Adress Strobe) и номер столбца CAS (Column Adress Strobe), из которых и считываются данные. Понятно, что между подачей команды и ее выполнением всегда будет какая-то задержка (латентность памяти), вот ее-то и характеризуют эти самые тайминги. Существует множество различных параметров, которые определяют тайминги, но чаще всего используются четыре из них:

  • CAS Latency (CAS) — задержка в тактах между подачей сигнала CAS и непосредственно выдачей данных из соответствующей ячейки. Одна из важнейших характеристик любого модуля памяти;
  • RAS to CAS Delay (tRCD) — количество тактов шины памяти, которые должны пройти после подачи сигнала RAS до того, как можно будет подать сигнал CAS;
  • Row Precharge (tRP) — время закрытия страницы памяти в пределах одного банка, тратящееся на его перезарядку;
  • Activate to Precharge (tRAS) — время активности строба. Минимальное количество циклов между командой активации (RAS) и командой подзарядки (Precharge), которой заканчивается работа с этой строкой, или закрытия одного и того же банка.

Если вы увидите на модулях обозначения «2-2-2-5» или «3-4-4-7», можете не сомневаться, это упомянутые выше параметры: CAS-tRCD-tRP-tRAS.

Стандартные значения CAS Latency для памяти DDR — 2 и 2.5 такта, где CAS Latency 2 означает, что данные будут получены только через два такта после получения команды Read. В некоторых системах возможны значения 3 или 1.5, а для DDR2-800, к примеру, последняя версия стандарта JEDEC определяет этот параметр в диапазоне от 4 до 6 тактов, при том, что 4 — экстремальный вариант для отборных «оверклокерских» микросхем. Задержка RAS-CAS и RAS Precharge обычно бывает 2, 3, 4 или 5 тактов, а tRAS — чуть больше, от 5 до 15 тактов. Естественно, чем ниже эти тайминги (при одной и той же тактовой частоте), тем выше производительность памяти. Например, модуль с латентностью CAS 2,5 обычно работает лучше, чем с латентностью 3,0. Более того, в целом ряде случаев быстрее оказывается память с меньшими таймингами, работающая даже на более низкой тактовой частоте.

В таблицах 2-4 предоставлены общие скорости памяти DDR, DDR2, DDR3 и спецификации:

ТипЧастота шиныСкорость передачи данныхТаймингиЗаметки
PC2100 133 266 2.5-3-3-7 Старые ПК, ноутбуки
PC2700 166 333 2.5-3-3-7 Старые ПК, ноутбуки
PC3200 200 400 2.5-3-3-8
Популярная стандарт
PC3500 217 433 2.5-3-3-7 Оверклокерные стандарты
PC3700 233 466 2.5-3-3-7
PC4000 250 500 2.5-3-3-7
PC4400 275 550 2.5-3-3-7
PC4800 300 600 2.5-4-4-10

Таблица 2: Общие скорости памяти DDR и спецификации

 

ТипЧастота шиныСкорость передачи данныхТаймингиЗаметки
PC2-3200 200 400 3-3-3-12 Редко встречаеться
PC2-4200 267 533 4-4-4-12 Популярная стандарт
PC2-5300 333 667 5-5-5-15 Широко используемые
PC2-6400 400 800 5-5-5-15 Последний стандарт
PC2-8000 500 1000 5-5-5-15 Оверклокерные стандарты
PC2-8500 533 1066 5-5-5-15
PC2-8888 556 1111 5-5-5-15
PC2-9136 571 1142 5-5-5-15
PC2-10000 625 1250 5-5-5-18

Таблица 3: Общие скорости памяти DDR2 и спецификации

 

ТипЧастота шиныСкорость передачи данныхТаймингиЗаметки
PC3-8500 533 1066 7-7-7-20 чаще называемые DDR3-1066
PC3-10666 667 1333 7-7-7-20 чаще называемые DDR3-1333
PC3-12800 800 1600 9-9-9-24 чаще называемые DDR3-1600
PC3-14400 900 1800 9-9-9-24 чаще называемые DDR3-1800
PC3-16000 1000 2000 TBD чаще называемые DDR3-2000

Таблица 4: Общие скорости памяти DDR3 и спецификации

DDR3 можно назвать новичком среди моделей памяти. Модули памяти этого вида, доступны только около года. Эффективность этой памяти продолжает расти, только недавно достигла границ JEDEC, и вышла за эти границы. Сегодня DDR3-1600 (высшая скорость JEDEC) широко доступна, и все больше производителей уже предлагают DDR3-1800). Прототипы DDR3-2000 показаны на современном рынке, и в продажу должны поступить в конце этого года — начале следующего года.

Процент поступления на рынок модулей памяти DDR3, согласно с данными производителей, все еще небольшая, в пределах 1%-2%, и это значит, что DDR3 должен пройти длинный путь прежде чем будет соответствовать продажам DDR (все еще находиться в пределах 12%-16%) и это позволит DDR3 приблизиться к продажам DDR2. (25%-35% по показателям производителей).

DDR SDRAM — это… Что такое DDR SDRAM?

У этого термина существуют и другие значения, см. DDR. Модуль памяти DDR со 184 контактами Модули оперативной буферизированной памяти Micron PC2700 DDR SDRAM, содержащие микросхемы, обеспечивающие ECC

DDR SDRAM (от англ. Double Data Rate Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных) — тип компьютерной памяти, используемой в вычислительной технике в качестве оперативной и видеопамяти. Пришла на смену памяти типа SDRAM.

При использовании DDR SDRAM достигается удвоенная скорость работы, нежели в SDRAM, за счёт считывания команд и данных не только по фронту, как в SDRAM, но и по спаду тактового сигнала. За счёт этого удваивается скорость передачи данных без увеличения частоты тактового сигнала шины памяти. Таким образом, при работе DDR на частоте 100 МГц мы получим эффективную частоту 200 МГц (при сравнении с аналогом SDR SDRAM). В спецификации JEDEC[1] есть замечание, что использовать термин «МГц» в DDR некорректно, правильно указывать скорость «миллионов передач в секунду через один вывод данных».

Специфическим режимом работы модулей памяти является двухканальный режим.

Описание

Микросхемы памяти DDR SDRAM выпускаются в корпусах TSOP и (освоено позднее) корпусах типа BGA (FBGA), производятся по нормам 0,13 и 0,09-микронного техпроцесса:

  • Напряжение питания микросхем: 2,6 В +/- 0,1 В
  • Потребляемая мощность: 527 мВт
  • Интерфейс ввода-вывода: SSTL_2

Ширина шины памяти составляет 64 бита, то есть по шине за один такт одновременно передаётся 8 байт. В результате получаем следующую формулу для расчёта максимальной скорости передачи для заданного типа памяти: (тактовая частота шины памяти) x 2 (передача данных дважды за такт) x 8 (число байтов передающихся за один такт). Например, чтобы обеспечить передачу данных дважды за такт, используется специальная архитектура «2n Prefetch». Внутренняя шина данных имеет ширину в два раза больше внешней. При передаче данных сначала передаётся первая половина шины данных по фронту тактового сигнала, а затем вторая половина шины данных по спаду.

Помимо удвоенной передачи данных, DDR SDRAM имеет несколько других принципиальных отличий от простой памяти SDRAM. В основном, они являются технологическими. Например, был добавлен сигнал QDS, который располагается на печатной плате вместе с линиями данных. По нему происходит синхронизация при передаче данных. Если используется два модуля памяти, то данные от них приходят к контроллеру памяти с небольшой разницей из-за разного расстояния. Возникает проблема в выборе синхросигнала для их считывания, и использование QDS успешно это решает.

JEDEC устанавливает стандарты для скоростей DDR SDRAM, разделённых на две части: первая для чипов памяти, а вторая для модулей памяти, на которых, собственно, и размещаются чипы памяти.

Чипы памяти

В состав каждого модуля DDR SDRAM входит несколько идентичных чипов DDR SDRAM. Для модулей без коррекции ошибок (ECC) их количество кратно 4, для модулей с ECC — формула 4+1.

Спецификация чипов памяти

  • DDR200: память типа DDR SDRAM, работающая на частоте 100 МГц
  • DDR266: память типа DDR SDRAM, работающая на частоте 133 МГц
  • DDR333: память типа DDR SDRAM, работающая на частоте 166 МГц
  • DDR400: память типа DDR SDRAM, работающая на частоте 200 МГц

Характеристики чипов

  • Ёмкость чипа (DRAM density). Записывается в мегабитах, например, 256 Мбит — чип ёмкостью 32 мегабайта.
  • Организация (DRAM organization). Записывается в виде 64M x 4, где 64M — это количество элементарных ячеек хранения (64 миллиона), а x4 (произносится «by four») — разрядность чипа, то есть разрядность каждой ячейки. Чипы DDR бывают x4 и x8, последние стоят дешевле в пересчёте на мегабайт ёмкости, но не позволяют использовать функции Chipkill, memory scrubbing и Intel SDDC.

Модули памяти

Графическое сравнении модулей памяти DDR, DDR2 и DDR3

Модули DDR SDRAM выполнены в форм-факторе DIMM. На каждом модуле расположено несколько одинаковых чипов памяти и конфигурационный чип SPD. На модулях регистровой (registered) памяти также располагаются регистровые чипы, буферизующие и усиливающие сигнал на шине, на модулях нерегистровой (небуферизованной, unbuffered) памяти их нет.

Характеристики модулей

  • Объём. Указывается в мегабайтах или гигабайтах.
  • Количество чипов (# of DRAM Devices). Кратно 8 для модулей без ECC, для модулей с ECC — кратно 9. Чипы могут располагаться на одной или обеих сторонах модуля. Максимальное умещающееся на DIMM количество — 36 (9×4).
  • Количество строк (рангов) (# of DRAM rows (ranks)).

Чипы, как видно из их характеристики, имеют 4- или 8-ми битную шину данных. Чтобы обеспечить более широкую полосу (например, DIMM требует 64 бита и 72 бита для памяти с ECC), чипы связываются в ранги. Ранг памяти имеет общую шину адреса и дополняющие друг друга линии данных. На одном модуле может размещаться несколько рангов. Но если нужно больше памяти, то добавлять ранги можно и дальше, установкой нескольких модулей на одной плате и используя тот же принцип: все ранги сидят на одной шине, только чип селекты разные — у каждого свой. Большое количество рангов электически нагружает шину, точнее контроллер и чипы памяти, и замедляет их работу. Отсюда начали применять многоканальную архитектуру, которая позволяет также независимо обращаться к нескольким модулям.

  • Задержки (тайминги): CAS Latency (CL), Clock Cycle Time (tCK), Row Cycle Time (tRC), Refresh Row Cycle Time (tRFC), Row Active Time (tRAS).

Характеристики модулей и чипов, из которых они состоят, связаны.

Объём модуля равен произведению объёма одного чипа на число чипов. При использовании ECC это число дополнительно умножается на коэффициент 9/8, так как на каждый байт приходится один бит избыточности для контроля ошибок. Таким образом, один и тот же объём модуля памяти можно набрать большим числом (36) маленьких чипов или малым числом (9) чипов большего объёма.

Общая разрядность модуля равна произведению разрядности одного чипа на число чипов и равна произведению числа рангов на 64 (72) бита. Таким образом, увеличение числа чипов или использование чипов x8 вместо x4 ведёт к увеличению числа рангов модуля.

Пример: Варианты модуля 1Гб PC2100 Registered DDR SDRAM
Объём модуля Количество чипов Объём чипа Организация Количество строк (рангов)
1 Гб 36 256 Мбит 64М x 4 2
1 Гб 18 512 Мбит 64М x 8 2
1 Гб 18 512 Мбит 128М x 4 1

В данном примере сравниваются возможные компоновки модуля серверной памяти объёмом 1 Гб. Из представленных вариантов следует предпочесть первый или третий, так как они используют чипы x4, поддерживающие продвинутые методы исправления ошибок и защиты от сбоев. При необходимости использовать одноранговую память остаётся доступен только третий вариант, однако в зависимости от текущей стоимости чипов объёмом 256 Мбит и 512 Мбит он может оказаться дороже первого.

Спецификация модулей памяти

Спецификация модулей памяти
Спецификация Тактовая частота шины памяти Максимальная теоретическая пропускная способность памяти
в одноканальном режиме в двухканальном режиме
PC1600*
(DDR200)
100 МГц 1600 Мбайт/сек 3200 Мбайт/сек
PC2100*
(DDR266)
133 МГц 2133 Мбайт/сек 4267 Мбайт/сек
PC2400
(DDR300)
150 МГц 2400 Мбайт/сек 4800 Мбайт/сек
PC2700*
(DDR333)
166 МГц 2667 Мбайт/сек 5333 Мбайт/сек
PC3200*
(DDR400)
200 МГц 3200 Мбайт/сек 6400 Мбайт/сек
PC3500
(DDR433)
217 МГц 3467 Мбайт/сек 6933 Мбайт/сек
PC3700
(DDR466)
233 МГц 3733 Мбайт/сек 7467 Мбайт/сек
PC4000
(DDR500)
250 МГц 4000 Мбайт/сек 8000 Мбайт/сек
PC4200
(DDR533)
267 МГц 4267 Мбайт/сек 8533 Мбайт/сек

Примечание 1: стандарты, помеченные символом «*», официально сертифицированы JEDEC. Остальные типы памяти не сертифицированы JEDEC, хотя их и выпускали многие производители памяти, а большинство выпускавшихся в последнее время материнских плат поддерживали данные типы памяти.

Примечание 2: выпускались модули памяти, работающие и на более высоких частотах (до 350 МГц, DDR700), но эти модули не пользовались большим спросом и выпускались в малом объёме, кроме того, они имели высокую цену.

Размеры модулей также стандартизированы JEDEC.

Надо заметить, что нет никакой разницы в архитектуре DDR SDRAM с различными частотами, например, между PC1600 (работает на частоте 100МГц) и PC2100 (работает на частоте 133МГц). Просто стандарт говорит о том, на какой гарантированной частоте работает данный модуль.

Модули памяти DDR SDRAM можно отличить от обычной SDRAM по числу выводов (184 вывода у модулей DDR против 168 выводов у модулей с обычной SDRAM) и по ключу (вырезы в области контактных площадок) — у SDRAM два, у DDR — один. Согласно JEDEC, модули DDR400 работают при напряжении питания 2,6 В, а все более медленные — при напряжении 2,5 В. Некоторые скоростные модули для достижения высоких частот работают при больших напряжениях, до 2,9 В.

Большинство последних чипсетов с поддержкой DDR позволяли использовать модули DDR SDRAM в двухканальном, а некоторые чипсеты и в четырёхканальном режиме. Данный метод позволяет увеличить в 2 или 4 раза соответственно теоретическую пропускную способность шины памяти. Для работы памяти в двухканальном режиме требуется 2 (или 4) модуля памяти, рекомендуется использовать модули, работающие на одной частоте и имеющие одинаковый объём и тайминги (ещё лучше использовать абсолютно одинаковые модули).

Сейчас модули DDR практически вытеснены модулями типов DDR2 и DDR3, которые в результате некоторых изменений в архитектуре позволяют получить бо́льшую пропускную способность подсистемы памяти. Ранее главным конкурентом DDR SDRAM являлась память типа RDRAM (Rambus), однако ввиду наличия некоторых недостатков со временем была практически вытеснена с рынка.

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 28 июня 2010.

Примечания

  1. Спецификация DDR SDRAM (JESD79C)

Литература

В. Соломенчук, П. Соломенчук Железо ПК. — 2008. — ISBN 978-5-94157-711-8

Гук М. Ю. Аппаратные средства IBM PC. Энциклопедия. — Питер, 2006. — 1072 с.

Копейкин М. В., Спиридонов В. В., Шумова Е. О. Организация ЭВМ и систем. (Память ЭВМ): Учебн. Пособие. — СПб, 20064. — 153 с.

Ссылки

Оперативная память DDR, характеристики, где устанавливается

Оперативная память DDR или DDR SDRAM позволила сделать существенный скачок в развитии скорости передачи данных, да и вообще в работе персональных компьютеров.

Отличие от SDRAM

Оперативная память DDR это усовершенствованный стандарт память SDRAM и является ее логическим усовершенствованием.

Такой тип памяти работает со скоростью в два раза превышающую скорость работы памяти SDRAM.

Это было достигнуто за счет того, что передача данных в данном типе памяти осуществляется два раза за один цикл. Но ни как за счет удвоения частоты работы, как могут подумать многие.

Передача данных осуществляется два раза. В начале цикла первый раз, в конце цикла второй раз. При этом, как было уже сказано, ни частота, ни синхронизирующие сигналы не были изменены.

Сравнение работы памяти SDRAM и памяти DDR можно увидеть на скриншоте.

Оперативная память DDR впервые появилась в 2000 году, но системные платы и наборы микросхем, которые начали поддерживать этот стандарт, появились с запозданием в 2001 году.

Модуль DIMM памяти DDR уже был 184 контактный, соответственно установить его в старые системные платы, которые поддерживали стандарт PC133, уже не представлялось возможным.

Отличия разных типов модулей ОЗУ смотрите ниже.

Еще положительным моментом в работе памяти DDR, помимо удвоенной скорости работы, это напряжение с которой данная память работает. Равно оно 2,5 В. Что существенно уменьшило теплоотдачу при работе компьютера.

Ниже приведен скриншот, в котором можно посмотреть основные характеристики модулей памяти DDR.

Однако следует понимать, что данные значения относятся только к одной планки модуля.

Но уже тогда и естественно сейчас установленные в компьютер наборы микросхем поддерживают двух канальный режим работы оперативной памяти DDR.

Но для этого следует установить хотя бы два модуля, а лучше четыре, если позволяет системная плата.

Как добиться максимальной производительности компьютера

Наивысшая производительность компьютера может быть достигнута только тогда, когда пропускные возможности процессора и оперативной памяти совпадают.

Поэтому для того, чтобы добиться наивысшей производительности компьютера, нужно понимать какая память ОЗУ, в оптимальной комплектации, подойдет для конкретной модели процессора.

К примеру, у нас есть процессор Pentium 4, частота работы шины которого 800 МГц. Этот пример больше подходит для середины 2000 – х, но в принципе, его можно применить и к современным моделям компьютеров.

За одни такт данный процессор передает 8 байт информации. Но у него частота работы 800 МГц. Значит, умножаем 800 МГц на 8 и получаем цифру 6 400 Мбайт/с.

Так, с процессором мы разобрались. Теперь подбираем ОЗУ.

Так как память DDR работает в двух канальном режиме, то нам нужны два модуля памяти PC3200. Скорость передачи данных одного модуля 3200 Мбайт/с, а два модуля будут передавать 3200 умножаем на 2, равно 6400 Мбайт/с.

При этом будет происходить полный синхронный обмен данными между процессором и оперативной памятью, что предотвратить какие-либо задержки в работе компьютера.

Итак, мы рассмотрели основные характеристики оперативной памяти DDR и основные отличия ее от памяти SDRAM.

Научились правильно подбирать оперативную память компьютера и процессор для оптимальной работы системы.

В следующей статье рассмотрим DDR2, которая так же является еще одним связующим звеном в эволюции развития оперативной памяти компьютера.

Новые технологии памяти: DDR SDRAM

Уже давно, еще со времен 486 процессоров, отставание скорости системной шины PC от скорости убыстряющихся CPU все более увеличивалось. Именно тогда Intel впервые отказался от частоты процессоров, синхронной с частотой системной шины, и применил технологию умножения частоты FSB. Этот факт отразился даже в названии — 486DX2. Хотя частота системной шины осталась той же, несмотря на название, производительность процессора выросла почти вдвое.

В дальнейшем разброд в тактовой частоте различных системных компонентов только увеличивался: в то время, как частота системной шины выросла сначала до 66 МГц, а затем и до 100, шина PCI осталась все на тех же давних 33 МГц, для AGP стандартной является 66 МГц и т.д. Шина памяти же до самого последнего времени оставалась синхронной с системной шиной (название обязывает — Synchronous DRAM, SDRAM). — Так появились спецификации PC66, затем PC100, потом, с несколько большими организационными усилиями, PC133 SDRAM.

Однако за то время, за которое частота шины памяти увеличилась на треть и, соответственно, на столько же возросла ее пропускная способность (с 800 Мбайт/с до 1,064 Мбайт/с), частота процессоров увеличилась в два с половиной раза — с 400 МГц до 1 ГГц. Наблюдается некоторый дисбаланс, не так ли? Пропускная способность PC133 SDRAM составляет лишь 1,064 Мбайт/с, тогда как сегодняшним PC требуется по крайней мере: 1 Гбайт/с для процессора с частотой системной шины 133 МГц, столько же — для графической шины AGP 4X, 132 Мбайт/с для 33 МГц шины PCI. То есть, около 2.1 Гбайт/с — как и говорилось только что, дисбаланс более чем в два раза.

Однако дальнейшее увеличение частоты SDRAM при современном техническом уровне оснащения ее производителей невозможно: уже 166 МГц SDRAM получается слишком дорогой, особенно с учетом сегодняшних объемов оперативной памяти в PC. Этот момент сыграл не слишком приятную шутку с Direct Rambus DRAM. В то же время отказываться от синхронизации шины памяти с системной шиной по ряду причин не хотелось бы.

Технологии, пытающиеся залатать SDRAM путем добавления кэша SRAM, вроде ESDRAM, или же путем оптимизации ее работы, вроде VCM SDRAM, не помогли. На выручку пришла популярная в последнее время в компонентах PC технология передачи данных одновременно по двум фронтам сигнала, когда за один такт передаются сразу два пакета данных. В случае с используемой сегодня 64-бит шиной — это два 8-байтных пакета, 16 байт за такт. Или, в случае с той же 133 МГц шиной, уже не 1,064, а 2,128 Мбайт/с. Те самые 2.1 Гбайт/с, что и требуются для сегодняшних PC.

Причем по цене, мало отличающейся от обычной 133 МГц памяти: технология та же (включая методику упаковки чипов — TSOP, не microBGA, как у RDRAM), оборудование — то же, энергопотребление, практически не отличающееся от SDRAM, площадь чипа отличается лишь на несколько процентов. Именно это сочетание доступности с требующейся на сегодняшний день производительностью и заинтересовало в первую очередь прагматичную индустрию DRAM — точно так же в свое время они выбирали PC66, PC100, PC133…

Однако в отличие от этих спецификаций, в название которых входила тактовая частота шины памяти, так же, как и в отличие от спецификации Direct Rambus DRAM, где за основу берется результирующая частота (тактовая частота, помноженная на те же два пакета на такт, что и у DDR SDRAM) — PC600, PC700, PC800, компании, разрабатывавшие DDR SDRAM, а точнее, маркетинговые отделы этих компаний, избрали ту систему (помните мультфильм про относительность единиц измерения — 48 попугаев?), которая позволила получить максимальную цифру в названии — они выбрали пиковую пропускную способность и получили PC1600 для 100 МГц и PC2100 для 133 МГц чипов DDR SDRAM.

Впрочем, эта система названий придумана совсем недавно, хотя чипы DDR SDRAM производятся уже достаточно давно: образцы 64 Мбит чипов появились почти два года назад — в середине 1998 г. Именно к тому времени, в декабре 1998 г., когда Intel уже продолжительное время поддерживал RDRAM, одобрена открытая спецификация DDR SDRAM, не требующая от производителей, использующих ее, никаких лицензионных отчислений. Как и в случае с PC133 SDRAM, основными сторонниками новой спецификации выступили IBM и VIA, к тому времени четко ориентировавшиеся на альтернативные RDRAM архитектуры. Несколькими месяцами спустя, в мае, одобрена спецификация 184-контактных модулей DIMM, а также закончена работа над спецификацией DDR SGRAM.

Примерно через полтора года DDR SDRAM доведен до стадии, когда производители DRAM в состоянии начать его коммерческое производство -появились уже образцы 133 МГц 64 Мбит чипов DDR SDRAM, соответствующие спецификации PC2100 и готовые к началу производства.

Однако первыми чипы DDR использовали отнюдь не производители модулей памяти. Производителям видеокарт проще — на карте они в праве применять что угодно, лишь бы на выходе был стандартный сигнал. Да и ширина шины памяти все же всегда была узким местом скорее для графических чипов, чем для центральных процессоров. Так что, производители видеокарт гораздо раньше воспользовались появившейся в графических чипах поддержкой DDR SDRAM/SGRAM.- Уже через несколько месяцев после выхода первого такого чипа, GeForce 256, появились карты с DDR SDRAM и SGRAM чипами на борту.

Стандартной скоростью чипов для первой волны DDR плат стали 150 и 166 МГц (результирующая частота — 300 и 333 МГц соответственно, пропускная способность шины, с учетом 128-бит разрядности — 4.8 и 5.2 Гбайт/с). Можно с большой уверенностью предположить, что осеннее поколение графических чипов будет ориентироваться на 183 МГц чипы (366 МГц, 6 Гбайт/с), а в 2001 г. мы увидим массовый выход видеокарт с 200 МГц (400 МГц, 6.4 Гбайт/с).

Результат замены SDRAM/SGRAM на их вдвое более быстрый аналог не замедлил сказаться. Производительность карт на системах с мощным центральным процессором при использовании приложений, оказывающих заметную нагрузку именно на шину памяти (например 32-бит цвет), возрастает до полутора раз.

Оценивая известную на сегодня информацию о планах разработчиков графических чипов на ближайший год, можно констатировать бесспорную победу DDR над RDRAM. После того как Intel со своим i740 успешно продвинул AGP и отказался от дальнейших попыток прямого влияния в этой области, ситуацией, к счастью, управляет рынок. Дорогой RDRAM оказался никому не нужен, тем более что 128-бит шина памяти выводит DDR SDRAM по производительности даже вперед двухканального RDRAM.

А вот с модулями памяти DIMM DDR SDRAM положение несколько иное: их востребовать некому — весь вопрос встал за чипсетами, обладающими поддержкой этого типа памяти и, соответственно, за материнскими платами на базе этих чипсетов. Первый пользовательский чипсет, обладающий поддержкой этого типа памяти, ожидался от VIA сначала осенью 99 г., затем зимой 2000, весной… Но вроде бы, наконец, ожидание подходит к концу. Уже во втором квартале должен выйти первый чипсет VIA, обладающий поддержкой DDR SDRAM — Apollo Pro266.

Ко все той же 133 МГц системной шине и AGP 4X добавится поддержка DDR SDRAM, а также V-Link — новой, ускоренной шины обмена информацией между северным и южным мостами чипсета, обеспечивающей пропускную способность 266 Мбайт/с (в два раза быстрее стандартной PCI). Кроме того, ожидается, что поддержка двухпроцессорных конфигураций, встроенная еще в Apollo Pro133A, станет официальной.

Чуть позже, в третьем квартале, ожидается выход варианта Apollo Pro266 с интегрированным видеоядром PM266. Причем, в отличие от PM133 с хиленьким по меркам третьего квартала Savage4, в этот чипсет будет встроен вариант Savage2000 (GX4C). Его производительности для дешевых систем, являющихся нишевым рынком для интегрированных чипсетов, должно быть более чем достаточно.

И в последнем квартале 2000 г. должен выйти первый серверный чипсет VIA, PX266V. Пока о нем известно мало, за исключением того, что там ожидается поддержка до 4 процессоров и двойная шина V-Link: к южному мосту и к подсистеме 64-бит 66 МГц PCI.

На вторую половину этого года запланирован выход и DDR чипсета для Athlon — KX266, по своим возможностям аналогичного своему собрату для Pentium III — Apollo Pro266. Но на всякий случай, AMD предпочла вновь подстраховаться, выпустив в третьем квартале свой чипсет с поддержкой DDR SDRAM — AMD 760. Ожидается поддержка новой частоты системной шины EV6 — 133 МГц (266 МГц), естественно, 133 МГц PC2100 DDR SDRAM, ATA100. Вскоре после AMD 760 должен последовать мультипроцессорный AMD 770 с аналогичными параметрами.

Если уж зашла речь о мультипроцессорных чипсетах, рассчитанных на серверные платформы, то нельзя не упомянуть еще двух игроков на этом рынке: Samsung со своим Caspian, разрабатываемым совместно с AMD, и ServerWorks со своей линейкой ServerSet, которая должна обзавестись DDR SDRAM чипсетом для процессоров Intel уже в первой половине этого года.

Учитывая такие факторы как стоимость RDRAM, разницу в производительности RDRAM и DDR SDRAM и падение производительности подсистемы памяти RDRAM при увеличении объема памяти, подавляющее большинство производителей серверов намеревается предпочесть DDR SDRAM перед RDRAM. С этим желанием вынужден считаться даже Intel, который в своем следующем серверных чипсете под x86 (i870) планирует поддерживать именно DDR SDRAM. Да и помимо Intel на рынке серверных чипсетов будет достаточно желающих поддержать DDR — кроме независимых разработчиков, на этом рынке выступят и сами производители серверов, разрабатывающие чипсеты под свои системы — IBM, NEC…

Кварталом позже выхода соответствующих чипсетов, ожидаются материнские платы на них. Так что первые платы, позволяющие использовать модули DDR SDRAM, должны выйти уже в третьем квартале 2000 г. И именно эти временные рамки указаны в планах различных производителей материнских плат. Первым и единственным неудобством для их пользователей должен стать новый форм-фактор модулей DIMM.

К сожалению, ничто на свете не дается даром и увеличение пропускной способности памяти вдвое сопровождается изменением форм-фактора модулей. При сохранении тех же размеров модуля число контактов увеличилось со 168 до 184. Изменившееся положение ключа не позволит вставить модули DIMM DDR SDRAM в сегодняшние разъемы DIMM.

Но перейдем к наиболее интересному моменту, связанному с большинством компонентов PC, — конкретным значениям производительности. К сожалению, результаты чипсетов VIA, с которыми предстоит столкнуться обычным пользователям, неизвестны. Но, по крайней мере, уже известны результаты чипсета Samurai от Micron. VIA, кстати, лицензировала у Micron наработки по части DDR, а сам Micron вообще не горит желанием выходить на рынок чипсетов, рассматривая Samurai в первую очередь как страховочный вариант для стимуляции продажи чипов DDR SDRAM в сочетании с регистрированными 133 МГц модулями DDR SDRAM (серверный вариант — более надежные, но более медленные, пользовательский вариант — более быстрые небуферизованные модули DIMM):

StreamD — признанный индустрией тест, оценивающий эффективную пропускную способность шины памяти. Результаты вряд ли нуждаются в комментариях и как бы анонсируют все последующие результаты, полученные на приложениях, используемых в реальной жизни. Эти приложения, естественно, не столь зависят от пропускной способности шины памяти. Поэтому различия между платформами RDRAM и DDR очень сильно сглаживаются, но суть дела это не меняет: DDR в реальных приложениях в среднем незначительно превосходит RDRAM.

Теперь о перспективах. Стандарт модулей DIMM DDR SDRAM предполагает использование до 200 МГц чипов, с результирующей частотой 400 МГц и пропускной способностью 3.2 Гбайт/с — как у двухканального Direct Rambus DRAM. С того момента, когда DDR SDRAM исчерпает свои возможности, в 2003 г. должен стартовать DDR-II.

Скорость DDR-II чипов, как предполагается, начнется со 100 МГц, но за счет того, что будет передаваться 4 пакета данных за такт, их пропускная способность также должна составить 3.2 Гбайт/с. Учитывая такую технологию работы (передачу 32 байтов за такт) рост производительности DDR-II чипов при росте тактовой частоты будет максимальным — в 4 раза: 150 МГц дадут уже 4.8 Гбайт/с, а 200 МГц — 6.4 Гбайт/с.

Модули на этих чипах, как и модули на чипах DDR, также будут иметь свой собственный форм-фактор (230 контактов), и требовать новых чипсетов. То же самое можно сказать и о чипах Advanced DRAM Technology, которые должны появиться примерно в то же время.

До тех пор, еще три года, нам предстоит выбирать лишь между DDR SDRAM и Direct Rambus DRAM. Если Intel не будет силой влиять на рынок (а он будет!), то результат, учитывая соотношение цена/производительность, выглядит вполне понятным — выигрывает DDR SDRAM. В противном случае ситуация становится непредсказуемой: трудно просчитать, что пересилит — финансовая мощь Intel, или здравый смысл индустрии, и в какой пропорции проявят себя эти два компонента в конечном результате.

В любом случае, если отстраниться от экстремистских точек зрения, то можно констатировать, что как бы ни сложилась ситуация, судьба DDR SDRAM сегодня видится в более радужных оттенках, нежели, скажем, год назад. За этот год успел выйти Athlon, AMD набрала вес, а VIA — сделала ставку на DDR SDRAM. Поэтому, что бы ни произошло на рынке решений от Intel, те, кто будет приобретать в конце этого года процессоры AMD, просто обречены на DDR SDRAM. А это, если ситуация с ценой на RDRAM не изменится кардинально до конца года, уже само по себе выглядит неплохим аргументом в пользу выбора решения от AMD/VIA для тех, кто предпочитает делать покупки, руководствуясь разумом, а не рекламой.

Платформы от ServerWorks, которая сегодня выступает для Intel в роли страховочного варианта, закрывая те области на серверном рынке x86, которые не в состоянии закрыть Intel, смогут выступить столь же достойным ответом на i840 с двумя каналами Rambus на рынке решений для рабочих станций и серверов, как чипсеты VIA — на рынке обычных пользовательских PC.

По предварительным тестам прототипа Samurai, производительность системы на его основе равна производительности системы на базе i840, а порой и обгоняет ее. Это, с учетом цены модулей RIMM, которая вряд ли уменьшится в несколько раз в течение года, и объем памяти в серверах и рабочих станциях дает разницу в стоимости между решениями на базе DDR SDRAM и RDRAM в тысячи долларов при равной производительности.

Итог: производители DRAM не могут позволить себе не выпускать DDR SDRAM. Рынок для этого типа памяти существует, он весьма велик. Затрат для перехода на DDR SDRAM почти не требуется. Себестоимость изготовления чипов не слишком отличается от себестоимости изготовления чипов SDRAM той же тактовой частоты. Стоимость RDRAM столь высока, что пользователи, даже при неудовлетворенном спросе на память, зачастую просто не могут позволить себе увеличить объем памяти в своих PC. Получился парадокс: если отбросить PC133 SDRAM, как технологию, принадлежащую к предыдущему поколению, то на рынке общедоступной памяти просто нет предложения. Ну не считать же таковым безбожно дорогой RDRAM? При данных обстоятельствах воздержаться от выпуска DDR SDRAM было бы непростительной глупостью.

Складывается, наконец, и вторая половина мозаики: чипсеты и материнские платы. Во второй половине 2000 г. на рынке будет вполне достаточно решений, полностью закрывающих поддержкой DDR SDRAM весь спектр рынка: чипсеты VIA и AMD — High-End PC на базе Pentium III и Athlon, чипсеты AMD и Samsung — серверы и рабочие станции на базе Athlon, чипсеты ServerWorks — серверы и рабочие станции на базе Pentium III.

Доступен, дешев, производительность RDRAM по цене SDRAM… Жить будет. И неплохо.

DDR SDRAM — Википедия. Что такое DDR SDRAM

Модуль памяти DDR со 184 контактами Модули оперативной буферизированной памяти Micron PC2700 DDR SDRAM, содержащие 9 микросхем памяти. Дополнительная микросхема хранит ECC-коды класса SECDED (8 бит) для исправления одиночных и детектирования двойных ошибок на каждые 64 бита[1].

DDR SDRAM (от англ. Double Data Rate Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных) — тип компьютерной памяти, используемой в вычислительной технике в качестве оперативной и видеопамяти. Пришла на смену памяти типа SDRAM.

При использовании DDR SDRAM достигается удвоенная скорость работы, нежели в SDRAM, за счёт считывания команд и данных не только по фронту, как в SDRAM, но и по спаду тактового сигнала. За счёт этого удваивается скорость передачи данных без увеличения частоты тактового сигнала шины памяти. Таким образом, при работе DDR на частоте 100 МГц мы получим эффективную частоту 200 МГц (при сравнении с аналогом SDR SDRAM). В спецификации JEDEC[2] есть замечание, что использовать термин «МГц» в DDR некорректно, правильно указывать скорость «миллионов передач в секунду через один вывод данных».

Специфическим режимом работы модулей памяти является двухканальный режим.

Описание

Микросхемы памяти DDR SDRAM выпускались в корпусах TSOP и (освоено позднее) корпусах типа BGA (FBGA), производятся по нормам 0,13 и 0,09-микронного техпроцесса:

  • Напряжение питания микросхем: 2,6 В ± 0,1 В.
  • Потребляемая мощность: 527 мВт.
  • Интерфейс ввода-вывода: SSTL_2.

Ширина шины памяти составляет 64 бита, то есть по шине за один такт одновременно передаётся 8 байт. В результате получаем следующую формулу для расчёта максимальной скорости передачи для заданного типа памяти: (тактовая частота шины памяти) x 2 (передача данных дважды за такт) x 8 (число байтов передающихся за один такт). Например, чтобы обеспечить передачу данных дважды за такт, используется специальная архитектура «2n Prefetch». Внутренняя шина данных имеет ширину в два раза больше внешней. При передаче данных сначала передаётся первая половина шины данных по фронту тактового сигнала, а затем вторая половина шины данных по спаду.

Помимо удвоенной передачи данных, DDR SDRAM имеет несколько других принципиальных отличий от простой памяти SDRAM. В основном, они являются технологическими. Например, был добавлен сигнал QDS, который располагается на печатной плате вместе с линиями данных. По нему происходит синхронизация при передаче данных. Если используется два модуля памяти, то данные от них приходят к контроллеру памяти с небольшой разницей из-за разного расстояния. Возникает проблема в выборе синхросигнала для их считывания, и использование QDS успешно это решает.

JEDEC устанавливает стандарты для скоростей DDR SDRAM, разделённых на две части: первая для чипов памяти, а вторая для модулей памяти, на которых, собственно, и размещаются чипы памяти.

Чипы памяти

В состав каждого модуля DDR SDRAM входит несколько идентичных чипов DDR SDRAM. Для модулей без коррекции ошибок (ECC) их количество кратно 4, для модулей с ECC — формула 4+1.

Спецификация чипов памяти

  • DDR200: память типа DDR SDRAM, работающая на частоте 100 МГц
  • DDR266: память типа DDR SDRAM, работающая на частоте 133 МГц
  • DDR333: память типа DDR SDRAM, работающая на частоте 166 МГц
  • DDR400: память типа DDR SDRAM, работающая на частоте 200 МГц

Характеристики чипов

  • Ёмкость чипа (DRAM density). Записывается в мегабитах, например, 256 Мбит — чип ёмкостью 32 мегабайта.
  • Организация (DRAM organization). Записывается в виде 64M x 4, где 64M — это количество элементарных ячеек хранения (64 миллиона), а x4 (произносится «by four») — разрядность чипа, то есть разрядность каждой ячейки. Чипы DDR бывают x4 и x8, последние стоят дешевле в пересчёте на мегабайт ёмкости, но не позволяют использовать функции Chipkill[en], Memory scrubbing[en] и Intel Single-device data correction[en].

Модули памяти

Графическое сравнение модулей памяти DDR, DDR2 и DDR3

Модули DDR SDRAM выполнены в форм-факторе DIMM. На каждом модуле расположено несколько одинаковых чипов памяти и конфигурационный чип Serial presence detect[en]. На модулях регистровой (registered) памяти также располагаются регистровые чипы, буферизующие и усиливающие сигнал на шине, на модулях нерегистровой (небуферизованной, unbuffered) памяти их нет.

Характеристики модулей

  • Объём. Указывается в мегабайтах или гигабайтах.
  • Количество чипов (# of DRAM Devices). Кратно 8 для модулей без ECC, для модулей с ECC — кратно 9. Чипы могут располагаться на одной или обеих сторонах модуля. Максимальное умещающееся на DIMM количество — 36 (9×4).
  • Количество строк (рангов) (# of DRAM rows (ranks)).

Чипы, как видно из их характеристики, имеют 4- или 8-битную шину данных. Чтобы обеспечить более широкую полосу (например, DIMM требует 64 бита и 72 бита для памяти с ECC), чипы связываются в ранги. Ранг памяти имеет общую шину адреса и дополняющие друг друга линии данных. На одном модуле может размещаться несколько рангов. Но если нужно больше памяти, то добавлять ранги можно и дальше, установкой нескольких модулей на одной плате и используя тот же принцип: все ранги сидят на одной шине, только Chip select[en] разные — у каждого свой. Большое количество рангов электрически нагружает шину, точнее контроллер и чипы памяти, и замедляет их работу. Отсюда начали применять многоканальную архитектуру, которая позволяет также независимо обращаться к нескольким модулям.

  • Задержки (тайминги): CAS Latency (CL), Clock Cycle Time (tCK), Row Cycle Time (tRC), Refresh Row Cycle Time (tRFC), Row Active Time (tRAS).

Характеристики модулей и чипов, из которых они состоят, связаны.

Объём модуля равен произведению объёма одного чипа на число чипов. При использовании ECC это число дополнительно умножается на коэффициент 8/9, так как на каждый байт приходится один бит избыточности для контроля ошибок. Таким образом, один и тот же объём модуля памяти можно набрать большим числом (36) маленьких чипов или малым числом (9) чипов большего объёма.

Общая разрядность модуля равна произведению разрядности одного чипа на число чипов и равна произведению числа рангов на 64 (72) бита. Таким образом, увеличение числа чипов или использование чипов x8 вместо x4 ведёт к увеличению числа рангов модуля.

Пример: Варианты модуля 1Гб PC2100 Registered DDR SDRAM
Объём модуля Количество чипов Объём чипа Организация Количество строк (рангов)
1 Гб 36 256 Мбит 64М x 4 2
1 Гб 18 512 Мбит 64М x 8 2
1 Гб 18 512 Мбит 128М x 4 1

В данном примере сравниваются возможные компоновки модуля серверной памяти объёмом 1 Гб. Из представленных вариантов следует предпочесть первый или третий, так как они используют чипы x4, поддерживающие продвинутые методы исправления ошибок и защиты от сбоев. При необходимости использовать одноранговую память остаётся доступен только третий вариант, однако в зависимости от текущей стоимости чипов объёмом 256 Мбит и 512 Мбит он может оказаться дороже первого.

Спецификация модулей памяти

Название модуля Тип чипа Тактовая частота шины памяти, МГц Максимальная теоретическая пропускная способность, МБ/с
одноканальный режим двухканальный режим
PC1600* DDR200 100 1600 3200
PC2100* DDR266 133 2133 4267
PC2400 DDR300 150 2400 4800
PC2700* DDR333 166 2667 5333
PC3200* DDR400 200 3200 6400
PC3500 DDR433 217 3467 6933
PC3700 DDR466 233 3733 7467
PC4000 DDR500 250 4000 8000
PC4200 DDR533 267 4267 8533
PC5600 DDR700 350 5600 11200

Примечание 1: стандарты, помеченные символом «*», официально сертифицированы JEDEC. Остальные типы памяти не сертифицированы JEDEC, хотя их и выпускали многие производители памяти, а большинство выпускавшихся в последнее время материнских плат поддерживали данные типы памяти.

Примечание 2: выпускались модули памяти, работающие и на более высоких частотах (до 350 МГц, DDR700), но эти модули не пользовались большим спросом и выпускались в малом объёме, кроме того, они имели высокую цену[3].

Размеры модулей также стандартизированы JEDEC.

Надо заметить, что нет никакой разницы в архитектуре DDR SDRAM с различными частотами, например, между PC1600 (работает на частоте 100 МГц) и PC2100 (работает на частоте 133 МГц). Просто стандарт говорит о том, на какой гарантированной частоте работает данный модуль.

Модули памяти DDR SDRAM можно отличить от обычной SDRAM по числу выводов (184 вывода у модулей DDR против 168 выводов у модулей с обычной SDRAM) и по ключу (вырезы в области контактных площадок) — у SDRAM два, у DDR — один. Согласно JEDEC, модули DDR400 работают при напряжении питания 2,6 В, а все более медленные — при напряжении 2,5 В. Некоторые скоростные модули для достижения высоких частот работают при больших напряжениях, до 2,9 В.

Большинство последних чипсетов с поддержкой DDR позволяли использовать модули DDR SDRAM в двухканальном, а некоторые чипсеты и в четырёхканальном режиме. Данный метод позволяет увеличить в 2 или 4 раза соответственно теоретическую пропускную способность шины памяти. Для работы памяти в двухканальном режиме требуются 2 (или 4) модуля памяти. Рекомендуется использовать модули, работающие на одной частоте, имеющие одинаковый объём и временны́е задержки (латентность, тайминги). Ещё лучше использовать абсолютно одинаковые модули.

Сейчас модули DDR практически вытеснены модулями типов DDR2 и DDR3, которые в результате некоторых изменений в архитектуре позволяют получить бо́льшую пропускную способность подсистемы памяти. Ранее главным конкурентом DDR SDRAM являлась память типа RDRAM (Rambus), однако ввиду наличия некоторых недостатков со временем была практически вытеснена с рынка.

Примечания

Литература

  • В. Соломенчук, П. Соломенчук. Железо ПК. — 2008. — ISBN 978-5-94157-711-8.
  • Гук М. Ю. Аппаратные средства IBM PC. Энциклопедия. — Питер, 2006. — 1072 с.
  • Копейкин М. В., Спиридонов В. В., Шумова Е. О. Организация ЭВМ и систем. (Память ЭВМ): Учебн. Пособие. — СПб, 2004. — 153 с.

Ссылки

Оперативная память: виды, увеличение, диагностика

Что такое оперативная память?

Оперативная память – это оперативное запоминающее устройство (ОЗУ), в которой в процессе работы компьютерной техники хранятся выполняемые входные, выходные и промежуточные данные, обрабатываемые центральным процессором.

В процессе запуска операционной системы оперативка содержит данные программ и ОС. Объем оперативной памяти на прямую оказывает влияние на решение одновременно запущенных задач. То есть, чем больше объем ОЗУ, тем больше задач в состоянии обработать компьютер. Также очень часто используется видеокартой как видеопамять.

Виды оперативной памяти

На сегодняшний день выпущено четыре вида оперативной памяти: DDR, DDR2, DDR3, DDR4. Они также делятся на 2 форм фактора: DIMM – для компьютеров, SO-DIMM – для ноутбуков. Эти два типа абсолютно разные, их невозможно спутать, для компьютеров они вытянутые, для ноутбуков – короткие. Рассмотрим каждое поколение ОЗУ в отдельности.

DDR – первый тип памяти, ему более 20 лет. Использует напряжение 2.6В. Спецификации DDR SDRAM:

Название модуляТип чипаЧастота шины памяти, МГц
PC1600DDR200100
PC2100DDR266133
PC2400DDR300150
PC2700DDR333166
PC3200DDR400200
PC3500DDR433217
PC3700DDR466233
PC4000DDR500250
PC4200DDR533267
PC5600DDR700350

DDR2 – второе поколение оперативной памяти, впервые появилась в 2003 году. Использует напряжение 1.8В. Спецификации DDR2:

Название модуляТипЧастота шины памяти, МГц
PC2‑3200DDR2‑400200
PC2‑4200DDR2‑533266
PC2‑5300DDR2‑667333
PC2‑5400DDR2‑675337
PC2‑5600DDR2‑700350
PC2‑5700DDR2‑711355
PC2‑6000DDR2‑750375
PC2‑6400DDR2‑800400
PC2‑7100DDR2‑888444
PC2‑7200DDR2‑900450
PC2‑8000DDR2‑1000500
PC2‑8500DDR2‑1066533
PC2‑9200DDR2‑1150575
PC2‑9600DDR2‑1200600

DDR3 – это третье поколение, и оно делится на три типа с различным напряжением: DDR3 – 1.5В, DDR3L – 1.35В, DDR3U – 1.25В. Выпуск всех модификаций с 2007 по 2010 год. Спецификации DDR3:

Название модуляТипЧастота шины памяти, МГц
PC3‑6400DDR3‑800400
PC3‑8500DDR3‑1066533
PC3‑10600DDR3‑1333667
PC3‑12800DDR3‑1600800
PC3‑14900DDR3‑1866933
PC3‑17000DDR3‑21331066
PC3‑19200DDR3‑24001200

DDR4 – это последнее поколение на сегодняшний день, в массовое производство поступила в 2014 году. Потребляемое напряжение 1.2В. Имеет большее количество различных таймингов. Спецификации DDR4:

Название модуляТипЧастота шины памяти, МГц
PC4-12800DDR4-1600800
PC4-14900DDR4-1866933.33
PC4-17000DDR4-21331066.67
PC4-19200DDR4-24001200
PC4-21333DDR4-26661333
PC4-23466DDR4-29331466.5
PC4-25600DDR4-32001600

Как вы наверное заметили, каждое последующее поколение меньше потребляет энергии, но выдает более высокую производительность. Что придает эффективность в работе и минимальные энергозатраты.

Узнать тип своей оперативной памяти вы можете в этой статье

Как увеличить оперативную память

Тут, в принципе, нет ничего сложного. Чтобы увеличить оперативную память, предварительно отключаем блок питания компьютера с помощью кнопки или вытаскиваем кабель питания из сети; у ноутбука вытаскиваем зарядное устройство, снимаем аккумуляторную батарею. Открываем корпус компьютера или ноутбука, на материнской плате возле модулей оперативной памяти указан форм фактор ОЗУ, по нему вы сможете понять какой тип памяти поддерживает ваше устройство. Но я рекомендую снять модуль, установленный в вашем ПК и посмотреть поколение, тип, название и подобрать схожий с вашими характеристиками.

Что касается увеличения оперативки DDR3. Все материнские платы, поддерживающие DDR3, также поддерживают DDR3L, но не наоборот. То есть, материнки, выпущенные под DDR3L, не поддерживают оперативную память DDR3.

Диагностика ОЗУ

При повреждении модуля памяти, операционная система Windows начинает работать со сбоями и выдавать различные ошибки. В таких случаях приходится диагностировать все узлы компьютера. В рамках данной статьи я расскажу, как провести диагностику оперативной памяти.

Диагностика с помощью MemTest86+

Самой распространенной программой для диагностики оперативного запоминающего устройства среди мастеров является MemTest86+. Скачиваете образ программы MemTest86+, создаете загрузочный диск или флешку . Выставляете в биосе данный загрузчик на первое место или с помощью Boot Menu выбираете ваш носитель.

Загрузится MemTest86+ и автоматически начнется диагностика всех модулей оперативной памяти. Всего 10 тестов, каждая начинается с начала. Если выскочит хоть одна ошибка, то выключайте устройство, вытаскивайте все модули оставив лишь одну планку. Теперь диагностируйте каждую по отдельности чтобы выявить неисправную. О том, как выглядит неисправность в программе Мемтест смотрите картинку ниже. Ошибка может также показать себя как отображение различных казусов на экране.

По окончании теста, для выхода нажмите ESC.

Надеюсь данная статья многим читателям внесла ясность по вопросам оперативной памяти. В форме ниже подписывайтесь на новые статьи, делитесь с друзьями. Спасибо за внимание, до следующей встречи!

Начало новой эпохи. Как работает оперативная память стандарта DDR4 — Ferra.ru

Источник изображения

Еще одним нововведением в DDR стало наличие сигнала QDS. Он располагается на печатной плате вместе с линиями данных. QDS был полезен при использовании двух и более модулей памяти. В таком случае данные приходят к контроллеру памяти с небольшой разницей во времени из-за разного расстояния до них. Это создает проблемы при выборе синхросигнала для считывания данных, которые успешно решает как раз QDS.

Как уже говорилось выше, модули памяти DDR выполнялись в форм-факторах DIMM и SO-DIMM. В случае DIMM количество пинов составляло 184 штуки. Для того чтобы модули DDR и SDRAM были физически несовместимы, у решений DDR ключ (разрез в области контактной площадки) располагался в ином месте. Кроме этого, модули памяти DDR работали с напряжением 2,5 В, тогда как устройства SDRAM использовали напряжение 3,3 В. Соответственно, DDR обладала меньшим энергопотреблением и тепловыделением в сравнении с предшественником. Максимальная частота модулей DDR составляла 350 МГц (DDR-700), хотя спецификациями JEDEC предусматривалась лишь частота 200 МГц (DDR-400).

Память DDR2 и DDR3

Первые модули типа DDR2 появились в продаже во втором квартале 2003 года. В сравнении с DDR, оперативная память второго поколения не получила существенных изменений. DDR2 использовала всю ту же архитектуру 2n-prefetch. Если раньше внутренняя шина данных была вдвое больше, чем внешняя, то теперь она стала шире в четыре раза. При этом возросшую производительность чипа стали передавать по внешней шине с удвоенной частотой. Именно частотой, но не удвоенной скоростью передачи. В итоге мы получили, что если у DDR-400 чип работал на реальной частоте 200 МГц, то в случае DDR2-400 он функционировал со скоростью 100 МГц, но с вдвое большей внутренней шиной.

Также DDR2-модули получили большее количество контактов для присоединения к материнской плате, а ключ был перенесен в другое место для физической несовместимости с планками SDRAM и DDR. Вновь было снижено рабочее напряжение. Если модули DDR работали при напряжении 2,5 В, то решения DDR2 функционировали при разности потенциалов 1,8 В.

По большому счету, на этом все отличия DDR2 от DDR заканчиваются. Первое время модули DDR2 в отрицательную сторону отличались высокими задержками, из-за чего проигрывали в производительности планкам DDR с одинаковой частотой. Однако вскоре ситуация вернулась на круги своя: производители снижали задержки и выпускали более быстрые наборы оперативной памяти. Максимальная частота DDR2 достигала отметки эффективных 1300 МГц.

Что такое DDR RAM? (с изображениями)

Синхронная динамическая оперативная память с двойной скоростью передачи данных, более известная как DDR SDRAM или DDR RAM для краткости, представляет собой тип очень быстрой компьютерной памяти. Он основан на той же архитектуре, что и SDRAM, но использует тактовый сигнал по-разному, чтобы передавать вдвое больше данных за то же время.

Материнская плата компьютера.

В компьютерной системе тактовый сигнал — это частота колебаний, используемая для координации взаимодействия между цифровыми схемами. Проще говоря, синхронизирует общение. Цифровые схемы, предназначенные для работы с тактовым сигналом, могут реагировать на нарастающий или спадающий фронт сигнала. Микросхемы памяти SDRAM использовали только нарастающий фронт сигнала для передачи данных, в то время как DDR RAM передает данные как на нарастающих , так и на спадающих фронтах тактового сигнала, что делает его в два раза быстрее, чем SDRAM.

Микросхемы DDR SDRAM могут одновременно принимать более одной команды записи. Скорость ОЗУ

работает совместно с передней шиной (FSB) компьютерной системы.FSB — это двусторонний канал данных, который отправляет информацию от центрального процессора (ЦП) по всей материнской плате к различным компонентам, включая ОЗУ, микросхемы BIOS, жесткие диски и слоты PCI. Таким образом, компьютерная система с частотой системной шины 133 МГц, работающей под управлением DDR SDRAM, будет по существу работать как машина с частотой 266 МГц.

184-контактные модули памяти DDR RAM с двойным расположением выводов (DIMMS) работают должным образом только на материнских платах, предназначенных для их использования.Хотя эта оперативная память имеет разную скорость, установка версии, более быстрой, чем может поддерживать материнская плата, является пустой тратой денег, поскольку она будет работать только с той скоростью, которую позволяет материнская плата. Он визуально отличается от SDRAM тем, что SDRAM представляет собой 168-контактный модуль DIMM с двойной выемкой внизу вдоль контактов — одна выемка смещена от центра, а другая смещена. 184-контактная память DDR SDRAM имеет единственную выемку со смещением от центра.

DDR RAM обычно предназначена для процессоров с тактовой частотой 1 ГГц и выше.Такие обозначения, как PC1600 DDR SDRAM и PC2100 DDR SDRAM , совпадают с конкретными частотами FSB и CPU. Производители ОЗУ используют разные схемы для обозначения скорости процессора, и различные технические особенности обозначений и стандартов ОЗУ могут сбивать с толку. Пользователи компьютеров должны проверить руководство к своей материнской плате, чтобы узнать, какой тип ОЗУ совместим с их системой, прежде чем покупать память.

.

Что означает DDR?


DDR

Dance Dance Revolution

Сообщество »Музыка

Оцените:
DDR

Аппаратное обеспечение с двойной скоростью передачи данных

9 —0007 …

Оцените:
DDR

Deutsche Demokratische Republik

Academic & Science »Ocean Science — и многое другое…

Оцените:
DDR

Devil Dog Review

Разное »Журналы

DDR

Девелоперы Диверсифицированная недвижимость

Бизнес »Символы NYSE — и многое другое …

Оцените:
DDR

DDR

DDR3 Бизнес »Компании и фирмы

Оцените:
DDR

Заместитель декана по исследованиям

Академия и наука» Университеты

DDR

D Двойная матрица Reverse

Разное »Монеты

Оцените:
DDR

Радарный пикетный эсминец (Эсминец, Эсминец, РЛС

Разное)

Разное
Оцените:
DDR

Запрос прямого дебета

Бизнес »Банковское дело

Оцените его:

Dynamic Document Review

Вычислительная техника »Сети

Оцените:
DDR

Цифровой дисковый рекордер

5 8 Аппаратное обеспечение Оцените:
DDR

Перетащите, оставьте и замените

Вычислительная техника »Программное обеспечение

Оцените это:
DDR

Business Resort

Dera8000 Companies Фирмы

Оцените:
DDR

Конференция по дизайну, развитию и исследованиям

Сообщество »Конференции

Оцените это
DDR

Не делайте RAMBUS

Разное »Приколы

Оценить:
DDR

DDR

DDR

Не делайте новичков

Спорт

Оцените:
DDR

DDR

Правительство »Правительство США

Оцените:
DDR

Deutsche Demokratische Republic (Германская Демократическая Республика)

Правительство»

Оцените:
DDR

Doherty, Duggan & Rouse Insurors

Бизнес »Компании и фирмы

Регистр данных назначения

Вычислительная техника »Сборка

9 0005
Оцените это:
DDR

Ресурсы задержки развития

Сообщество »Некоммерческие организации

415
DDR

Разоружение, демобилизация и реинтеграция

Правительственный »Военный

Оцените его:
DDR

Ежедневный отчет по науке и науке

Оцените: