Разное

Работа процессора видео: Конфигурации ПК для работы с видео и графикой (Май, 2020)

Содержание

Собираем компьютер для проигрывания и обработки 4K-видео | Процессоры | Блог

Совершенствование аппаратной базы позволило существенно повысить плотность размещения пикселей на экранах. Все большую популярность набирают телевизоры и мониторы, поддерживающие 4K. Если вы планируете заняться просмотром или обработкой видео в этом разрешении, то стоит позаботиться о покупке мощного железа и соответствующего монитора.

Немного теории

Термин 4K произошел от сокращения из информатики, где буква «K» означает «кило», то есть тысячу. Условно в эту категорию попадает любой формат дисплея с разрешением по горизонтали около 4000 пикселей. В кинематографе и телевидении разрешению 4K соответствует несколько соотношений пикселей:

  • полнокадровый — 4096 х 3072;
  • академический — 3656 х 2664;
  • широкоэкранный — 4096 х 1716;
  • кашетированный — 3996 х 2160;
  • DCI 4K — 4096 х 2160.

В 2012 году Ассоциация потребительской электроники установила общий стандарт для мониторов и телевизоров с поддержкой 4K. Так появилось разрешение Ultra High-Definition (UHD) — 3840 х 2160 пикселей. Именно в формате UHD выпускается большинство компьютерных мониторов и телевизоров с маркировкой 4K.

Предыдущее поколение 2K Quad High Definition (QHD) — это потребительский стандарт разрешением 2560 x 1440. Фактически, его можно назвать 2,5K, если учитывать число пикселей по горизонтали, но именно такой формат в электронике считают за 2K.

При покупке в первую очередь ориентируйтесь именно на значения пикселей — они помогут достоверно определить, с каким разрешением вы имеете дело.

Процесс рендеринга и кодирования требует ощутимых затрат вычислительных ресурсов, поэтому можно забыть о бюджетных сборках.

Комфортный просмотр

Самая доступная из всех — сборка исключительно для просмотра 4K-видеороликов. Здесь понадобится шестиядерный процессор уровня AMD Ryzen 5 1600 или Intel Core i5 девятого поколения, например, Core i5 9400.

Если хотите компьютер с заделом на будущее, можно выбрать уже Ryzen 5 2600. Аналогично потребуется видеокарта из среднего ценового сегмента — GTX 1050 Ti или GTX 1060. Для параллельного гейминга в FullHD можно купить более производительные модели — GTX 1660 Ti или GTX 1070.

Оптимальный объем ОЗУ — 8 Гб стандарта DDR4.

Мощность блока питания рассчитайте с помощью калькулятора энергопотребления в зависимости от комплектующих. Обязательно берите с запасом по мощности в 50–100 Вт. Как правило, для сборок на базе Ryzen 5 (Core i5) и GTX 1660 Ti с запасом хватает БП на 600 Вт.

Остальные комплектующие в лице материнской платы, корпуса и носителя информации подстраиваются под эти компоненты. Для охлаждения Ryzen 5 и Core i5 достаточно стандартного кулера. Компьютер будет стабильно воспроизводить видео в 4K, а также сможет использоваться для монтажа в 1080p.

Минимальная скорость соединения для просмотра роликов в 4K — 15 Мб/с. Такой показатель установил стриминговый сервис Netflix. В Apple требуют уже минимум 25 Мб/с. Если говорить о роликах на просторах Интернет, то многое зависит от битрейта и используемого кодека. Рекомендуется иметь стабильное соединение в 100 Мб/с, чтобы наверняка не испытывать зависаний.

Создание 4K контента

Видеомонтаж — это совсем другая задача. Чем производительнее компьютер, тем меньше потребуется времени для рендеринга (обработки) видеоролика. К наиболее популярным программам относятся Adobe Premiere и Sony Vegas. Они особенно требовательны к вычислительной мощности процессора. Если говорить о приложении DaVinci Resolve, то в этом случае приоритетом будет производительность видеокарты.

Минимальная сборка для монтажа в 4K включает следующую связку:

  • процессор: Ryzen R7 2700 или Intel Core i7 8700;
  • видеокарта: GTX 1050 Ti/ GTX 1060;
  • оперативная память: 16 GB DDR4 от 3000 Mhz.

Для DaVinci Resolve, где важна производительность видеокарты, стоит брать модель не ниже GTX 1660 Ti. Оптимально — добавить средств до RTX 2060.

Софт для видеомонтажа активно использует многопоточность, поэтому для 4K требуется процессор на 8 ядер и 16 потоков минимум. Обязательный пункт — SSD накопитель. Большинство магнитных жестких дисков ограничены скоростью чтения/записи в 100 Мб/с. Твердотельные накопители предлагают скорости до 500 Мб/с.

Проблема в том, что одна минута 4K-видеоролика для кодека HEVC 1 при битрейте 50 Мбит/с и 30 fps, в среднем, весит 360 мегабайт. А теперь представьте, что вы создаете ролик на 10–30 минут. Скорость записи на диск в таких случаях будет одним из самых важных параметров.

Профессиональная сборка для видеомонтажа в 4K включает:

  • процессор: AMD Ryzen 9 3900X или Intel Core i9 9900K;
  • видеокарта: RTX 2060;
  • оперативная память: 64GB DDR4 (4x16GB).

Можно покупать Intel и без разблокированного множителя (i9 9900). Если хочется немного сэкономить, смотрите в сторону более дешевых Ryzen 7 3700X и i7-9700K. Они менее производительные, но также отлично подходят для поставленной задачи.

Для DaVinci Resolve потребуется видеокарта уровня RTX 2070, оптимально установить RTX 2080 и не беспокоиться ближайшие годы об обновлении начинки.

В топовых вариантах придется думать об охлаждении, поскольку представленные процессоры имеют TPD (величина отвода тепловой мощности) 105 и 95 Вт для AMD и Intel соответственно. Понадобится мощное воздушное охлаждение на шесть теплоотводных трубок (например, Noctua NH-D14 или аналоги).

Если предполагается разгон процессора, то оптимальный вариант — водяное охлаждение. Обратите внимание, что в корпусе должны быть соответствующие посадочные места под водоблоки.

При установке планок ОЗУ обязательно почитайте спецификацию к материнской плате, чтобы правильно задействовать четырехканальный режим работы для большей производительности. Если говорить о частоте планок ОЗУ, то разница между частотами 2133 и 3400 МГц составляет около 10–11%. Стоит ли переплачивать за большую частоту — решать только вам.

Объем SSD выбирайте под свои потребности. Как правило, в профессиональной деятельности необходимо делать резервные копии. Для этого рекомендуется установить один твердотельный накопитель под хранение бэкапов (128–256 Гб), а второй SSD (256–960 Гб) в качестве основного рабочего.

Блок питания для минимальной и профессиональной сборок — не ниже стандарта 80 Plus Gold. Обозначение 80 Plus говорит о том, что продукция прошла сертификацию и имеет заявленные требования КПД. В деле с такими дорогостоящими комплектующими надежность БП важна как никогда. Для компьютеров на топовых комплектующих понадобится БП в 700–1000 Вт.

Профессиональная сборка предоставит полный комфорт в монтаже видеороликов в 4K разрешении, а также может вполне использоваться для создания роликов в 8К, но уже с меньшей эффективностью.

Выбор монитора

Главный параметр только один — разрешение экрана. Находите в фильтре пункт 3840х2160, ставите его активным и выбираете среди предложенных моделей. Все остальные параметры сугубо на ваш вкус и доступный бюджет. Однако мы дадим несколько рекомендаций относительно наиболее значимых:

  • Диагональ. Как показывает опыт многих пользователей, оптимальным будет модель от 24 дюймов. В ней можно во всех красках оценить 4K, а также с удобством открывать несколько окон параллельно друг другу на разных сторонах рабочего стола. Большинство моделей выпускаются в диапазоне 27–28,9 дюйма.
  • Частота обновления. 60 Гц являются минимальной нормой. Однако динамичные ролики с высоким FPS (частотой кадров) могут воспроизводиться с худшей цветопередачей. Матрица элементарно не успеет реагировать на изменения цвета. Чтобы этого избежать, можно купить мониторы на 120 и 144 Гц.
  • Тип матрицы. IPS обеспечивает лучшие углы обзора, в то время как матрица VA предлагает реалистичный уровень черного и отличную контрастность. Если говорить об обработке движений, то ощутимых различий пользователи не заметят. Часть моделей имеют матрицу TN. Она имеет худшее из трех матриц качество изображения, но отличается минимальным временем отклика в 1 мс.

Время реакции матрицы практически у всех UHD мониторов (за исключением моделей с TN матрицей) составляет 4–5 мс. Этого достаточно для работы с видео в 4K.

Пару слов об интерфейсах

Для соединения монитора с видеокартой компьютера используется кабель с соответствующим интерфейсом. Самый распространенный — HDMI. Понадобится спецификация 2.1. Однако цифровые обозначения не всегда имеются в описаниях к товару. Ориентируйтесь на надпись High-Speed (PremiumHigh-Speed). Она говорит, что стандарт поддерживает скорость до 18 Гбит/с и разрешение 4K при 60 кадрах в секунду. Минимальная пропускная способность — 13,3 Гбит/с. Этого хватит для воспроизведения видео 4K, но при 30 кадрах в секунду. Убедитесь, что на мониторе и видеокарте имеются интерфейсы HDMI не ниже уровня 2.0.

Альтернативное решение — Display Port. Поддержка разрешения 4K (3840 × 2160) заявлена у версии 1.2–1.2a и всех последующих (если говорить о частоте обновления в 60 Гц). Если ваш монитор поддерживает частоты 75–120 Гц, то понадобится только Display Port 1.3 или 1.4.

На многих видеокартах и телевизорах есть USB Type-C разъем, который может использоваться для передачи изображения. Здесь необходим стандарт не ниже USB 3.2 Gen 2. Он обеспечивает пропускную способность до 10 Гбит/с и частично позволит воспроизводить видео частотой в 30 кадров.

А вот интерфейс DVI уже в своей спецификации не подходит для передачи сигнала в разрешении 3840 × 2160 пикселей. Соответственно, на видеокартах вам потребуется использовать либо HDMI, либо DisplayPort.

Если у вас есть компьютер и монитор, удовлетворяющий этим требованиям, можете насладиться всеми невероятными пейзажами Исландии. Но лучше всего 4K передает красоты нашей родной планеты с орбиты. Обязательно насладитесь этими видами!

Руководство по сборке компьютера для обработки 4К-видео | Сборка компьютера, апгрейд | Блог

Собираем высокопроизводительный компьютер для работы с 4K-видео

Одним из главных преимуществ самостоятельной сборки компьютера является то, что вы можете идеально подобрать его конфигурацию под стоящие перед вами задачи, а значит потратить свой бюджет максимально эффективно. Пожалуй, самой популярной областью применения компьютеров на сегодняшний день являются игры, однако редактирование видеороликов также становится все более популярной задачей. Об игровых конфигурациях мы уже говорили в предыдущих статьях, а сегодня мы расскажем вам о том, как собрать компьютер для работы с видео.

В эпоху интернета все больше людей выступают в роли стримеров или публикуют свои видеоролики на платформах типа YouTube, поэтому им необходимо иметь определенные навыки по обработке видеоматериалов. И неважно, идет ли речь о полноценном фильме, домашнем видео со свадьбы или коротком сюжете, снятом на мобильный. Во всех случаях может потребоваться изменить длину видеоматериала, применить специальные эффекты, скорректировать цветопередачу и т.д., а для этого понадобится полноценный компьютер. Для продуктивной работы нужен хороший инструмент!

Учитывая, что у компьютеров есть огромное множество различных технических характеристик, на какие именно из них следует обратить внимание при сборке высокопроизводительной конфигурации? Обработка видеоматериалов – сложная вычислительная задача, и на скорость ее выполнения влияют центральный процессор, видеокарта, оперативная память и накопитель. В единое целое их объединяет материнская плата, поэтому от нее зависит стабильная и эффективная работа всех перечисленных компонентов. Далее мы расскажем, как выбрать подходящую материнскую плату с учетом четырех факторов ¬– четырех аппаратных характеристик компьютерной системы.

Четыре ключевых фактора при сборке компьютера для работы с 4K-видео

При выборе материнской платы для компьютера, предназначенного для редактирования видео в формате 4K, помимо обычных соображений стабильности и расширяемости конфигурации необходимо учесть ряд дополнительных факторов, которые отличаются от тех, что применимы к типичным игровым компьютерам, и поэтому могут быть оставлены без внимания некоторыми пользователями. Они перечислены ниже вместе с нашими комментариями.

⇒ Ключевой фактор №1: Количество процессорных ядер имеет большое значение. От этого фактора зависит скорость всех операций по монтажу и перекодированию видеоматериалов.

Когда речь идет о покупке компьютера для редактирования видеоматериалов в формате 4K, одним из ключевых компонентов все так же остается центральный процессор. Большинство видеоредакторов в настоящее время поддерживают многопоточную работу, поэтому многоядерные процессоры могут значительно улучшить производительность компьютера при декодировании, предварительном просмотре и синхронизированном преобразовании множества видеороликов одновременно. Таким образом, компьютеры, предназначенные для популярных задач по обработке 4K-видео, рекомендуется комплектовать процессором с шестью и более ядрами.

Современные процессоры Intel могут иметь до 18 ядер. Думается, этого будет достаточно для тех энтузиастов, которые желают получить максимально возможную производительность. Разумеется, для такого процессора нужна соответствующая материнская плата, и мы рекомендуем MSI X299 SLI PLUS. Она обладает мощной цифровой системой питания с высококачественной элементной базой, и поэтому легко обеспечит абсолютно стабильную работу 18-ядерных процессоров Intel Core X-серии даже при максимальных нагрузках.

⇒ Ключевой фактор №2: Оперативная память играет важную роль, особенно при одновременной обработке нескольких видеопотоков.

Оперативная память, как и процессор, играет важную роль при обработке видеоматериалов. Задачи вроде одновременного редактирования нескольких видеопотоков или экспортирования видеофайлов являются чрезвычайно требовательными к этому параметру, а сообщения о недостатке оперативной памяти появляются во время подобной работы не так уж редко. Как объем, так и скорость работы памяти влияют на время обработки, рендеринга и предварительного просмотра видеороликов, поэтому важность этого фактора трудно переоценить. Обычно для типичных задач по работе с видео мы рекомендуем 16 и более гигабайт памяти. Видеоредакторы профессионального уровня требуют не менее 32 гигабайт.

Данный фактор тесно связан с конструкцией материнской платы. Как правило, на ней имеется два или четыре слота для модулей памяти общим объемом до 64 ГБ, но для профессиональной работы с мультимедийным контентом формата 4K этого может оказаться недостаточно. Поэтому мы бы также рекомендовали X299 SLI PLUS и в этом случае. Данная плата позволяет установить до 8 модулей памяти общим объемом до 128 ГБ – идеально для быстрой обработки множества видеопотоков одновременно.

Также стоит отметить, что материнские платы MSI серий X299 и Z370 обладают оптимизированной разводкой и эффективной электроизоляцией слотов памяти (технология DDR4 Boost), что обеспечивает максимально стабильный сигнал между оперативной памятью и процессором. В результате повышается общая надежность работы компьютера в ресурсоемких задачах, к которым относится и обработка видео.

⇒ Ключевой фактор №3 Накопители с высокоскоростными интерфейсами помогут снизить время, затрачиваемое на передачу видеофайлов.

По мере роста популярности оборудования для записи видео в формате 4K многие пользователи начинают использовать такие видеоматериалы в своей работе. Однако видеофайлы столь высокого качества требуют больше места для хранения, а также более интенсивного обмена данными с накопителем при их обработке. Вот почему приложениям по редактированию 4K-видео требуются более быстрые накопители, чем приложениям других типов.

Все материнские платы MSI серии SLI PLUS, оптимизированные для задач по обработке мультимедийного контента, оснащены USB-контроллером ASMedia 3142, который поддерживает более высокую пропускную способность по сравнению с другими решениями, что особенно проявляется при одновременной передаче данных по двум портам USB 3.1 Gen2.

Кроме того, для ускорения загрузки видео вместо традиционных жестких дисков все чаще применяются твердотельные накопители с интерфейсом M.2. Подключенные по шине PCIe Gen3 x4, они обладают пропускной способностью до 32 Гбит/с, в то время как пропускная способность интерфейса SATA жестких дисков составляет лишь 6 Гбит/с. Стоит, однако, отметить, что высокоскоростные твердотельные накопители могут нагреваться под интенсивными нагрузками и даже сбрасывать свою скорость в случае перегрева. Вот почему производители материнских плат предлагают различные решения для того, чтобы обеспечить эффективное охлаждение устройств в слотах M.2.

Так, на материнской плате X299 SLI PLUS применены алюминиевые радиаторы M.2 Shield, которые не только понижают рабочую температуру твердотельных накопителей, но и эффективно защищают их от электромагнитных помех.

Помимо двух слотов M.2 на плате X299 SLI PLUS имеется порт U.2, который используется для подключения накопителей корпоративного класса. Такие устройства отличаются повышенной стабильностью и производительностью.

Наличие сразу двух современных интерфейсов для накопителей (M.2 и U.2) делает материнскую плату X299 SLI PLUS идеальным выбором для компьютеров, предназначенных для обработки мультимедийного контента.

⇒ Ключевой фактор №4 Без мощной графической подсистемы не обойтись. Также важно качество слотов для видеокарт.

Профессиональные видеомонтажеры знают, что при недостаточной аппаратной производительности компьютера пострадает как воспроизведение видео (оно не будет таким плавным, как нужно), так и скорость рендеринга. Последняя особенно зависит от производительности видеокарты. Материнская плата X299 SLI PLUS от MSI поддерживает не только обычные игровые видеокарты, но и является совместимой с профессиональными видеокартами серии NVIDIA Quadro.

Более того, она позволяет собрать многопроцессорную графическую подсистему на базе технологии SLI из нескольких видеокарт Quadro, что позволит добиться еще более высокой скорости рендеринга.

Высокопроизводительные компоненты требуют усиленного охлаждения, поэтому мощные видеокарты обычно оснащаются массивными радиаторами с несколькими вентиляторами. Такое устройство обладает большим весом, что означает повышенную физическую нагрузку на графический слот PCIe x16. Случается, что слишком тяжелая видеокарта вырывает его с корнем.

Чтобы этого не случилось, все материнские платы MSI оснащаются как минимум одним слотом с защитной системой PCI-E Steel Armor. Это особый, усиленный способ крепления слота к печатной плате, использующий дополнительные точки пайки.

Для видеомонтажеров. Материнская плата, рекомендуемая для профессиональной работы с видеоматериалами.

Материнская плата X299 SLI PLUS – это стильно выглядящее устройство, выполненное в полностью черном цвете и обладающее богатыми техническими характеристиками, в том числе поддержкой технологии SLI. Помимо четырех ключевых факторов, перечисленных выше, в ней можно отметить наличие двух разъемов проводной сети на базе контроллеров Intel, которые пригодятся при работе с онлайн-контентом.

Для YouTube-блогеров и энтузиастов видеомонтажа. Материнская плата начального уровня, подходящая для редактирования 4K-видео

Из материнских плат, доступных на рынке в настоящее время, модель Z370 SLI PLUS является одной из лучших по соотношению цена/производительность. Стильный черный цвет печатной платы, мощные радиаторы для эффективного охлаждения и полноценный комплект современных интерфейсов (включая два порта M.2, USB 3.1 Gen2 и шесть портов SATA 3.0) – это устройство удовлетворит все требования YouTube-блогеров и энтузиастов видеомонтажа.

Другое рекомендуемое оборудование

• Материнская плата и процессор: X299 SLI PLUS и Intel i9-7900X (10 ядер/20 потоков), Z370 SLI PLUS и i7-8700K (6 ядер/12 потоков)

• Оперативная память: HyperX Predator 3000 МГц (32 ГБ)

• Видеокарта: GTX 1080 GAMING X 8G

• Твердотельный накопитель: Intel SSD 600P (256 ГБ, загрузочный)

• Жесткий диск: Seagate Barracuda PRO (3,5”, 10 ТБ)

• Система водяного охлаждения: Cooler Master MASTERLIQUID 240

• Корпус: Cooler Master H500P

• Блок питания: Cooler Master V750

Посмотрите ролик о сборке компьютера для редактирования 4K-видео

Оригинальный текст статьи: https://ru.msi.com/blog/4K-Video-Editing-Computer-Building-Guide

Обработка видео на CPU и GPU. Ответы эксперта / Блог компании Intel / Хабр

В этом посте мы публикуем ответы эксперта Intel Дмитрия Серкина на заданные вами ранее вопросы по обработке видео на CPU и GPU. Приносим свои извинения за некоторое опоздание — оно связано с большой разницей во времени между нами и Дмитрием.

Как обычно, для удобства поиска вопросы снабжены хабра-именем автора.


Вопрос Maratyszcza

Появятся ли в процессорах Intel аппаратные блоки для других (не видео) алгоритмов сжатия, например deflate?

Не думаю. Существует оптимизация для конкретных процессоров. Intel Integrated Performance Primitives, содержит оптимизацию ZLIB, DEFLATE, и GZIP семейства функций на уровне алгоритмики и инструкций.

Вопрос lifestar

Какие кодеки поддерживает аппаратное сжатие CPU?

Если мы говорим только о кодировании, то H.264, MPEG-2, MJPEG, and MVC for stereoscopic 3D support. На подходе еще несколько широко известных.

Вопрос JDima

Можно ли ожидать того, что QuickSync по качеству результирующей картинки сравнится с x264?

Если мы говорим о пресетах (настроек кодирования) на качество, то никогда не догонит. С каждой новой платформой качество кодирования улучшается, так как появляется больший ресурс на стороне железа и, как результат, возможность улучшить алгоритмы, например, оценки движения (motion estimation) и паковки битстрима. x264 использует очень хорошие алгоритмы (не быстрые, но влиящие на качество), в том числе RDO. Все это крайне плохо ложится на конвеерную архитектуру в железе. Если говорить про средние пресеты, то вполне бьет. Все, конечно, упирается в конечные настройки кодека, коих множество. Нужно понимать, что качество и скорость не идут рука об руку. Цель QuickSync кодировать быстро с хорошим для 99% пользователей качеством. И технология это делает. Тем временем работа по увеличению dB идет каждый день.

Вопрос weatherman

Сильно ли отличается по производительности HD 4000 и новая HD 5000? Можете ли привести какие-то примеры с современными играми?

Согласно недавним пресс релизам скорость возросла до 3х раз, энергопотребление уменьшилось в 2 раза. Публичных бэнчмарков по играм я не видел. Они должны появится за несколько недель до запуска Haswell в продажу. Насколько я помню, он состоится в июне. К сожалению, примеры привести не могу, так как я не в этой теме, я занимаюсь кодеками.

Вопросы tp7

1. Имеются ли планы по поддержке аппаратного декодирования многобитного видео, например Hi10P из h364 или «старших» профилей HEVC?

Не имею такой информации. Планы вещь изменчивая. Если эти профили массово используются, то с очень большой вероятностью они будут поддержаны.

2. Помнится, что некоторое время назад были попытки диалогов с разработчиками свободных кодеков на предмет того, чего им хотелось бы от новых процессоров Intel. Как сейчас обстоит дела в этом направлении? Влияют ли девелоперы открытого ПО на Intel и оказывает ли Intel им какую-либо поддержку?

Скорее на уровне приложений, а не разработчиков. Недавний анонс о том, что HandBrake поддерживает QuickSync – одно из таких событий. Это вклад Intel в свободный продукт. Такие активности будут происходить все чаще и чаще, так как развитие QuickSync на Linux и его производных (Android) в самом разгаре.
Что касается того, чтобы дать прямой доступ к драйверу и железу, то о таких активностях я не слышал. Кроме того, я считаю их бесмысленными, так как работа эта довольно нетривиальная. Кроме того, существует Media SDK, он предоставляет примитивы более высокого уровня.

3. На данный момент в принципе не существует хороших реализаций кодирования на GPU (их всего несколько, и все не отличаются качеством или особым преимуществом в скорости). Почему так происходит и имеются ли какие-то положительные подвижки в этой области?

Я нахожу QuickSync очень удачным решением, которое обладает и скоростью и хорошим (относительно этой скорости) качеством. Что касается решений от AMD или Nvidia, то их провал можно объяснить отличной от Intel архитектурой. Все их решения основаны на execution units и многопоточности, которую сложно использовать в кодеках (некоторые краеугольные алгоритмы не ложатся на многопоточность). QuickSync же это комбинация EU и fixed function (алгоритмические блоки «запаянные» в железо). Такая комбинация позволяет получить отличный прирост производительности и качества.

4. Не секрет, что производительность недавно вышедших HEVC и VP9 сейчас за гранью разумного. Какова ваша оценка, как скоро появится процессор/ПО, способные обрабатывать (хотя бы декодировать) HD-видео этих форматов в реальном времени?

Я полагаю, что через пару лет такая возможность появится.

5. Насколько широко в мультимедийных продуктах Intel используется рукописный асм, или больше полагаетесь на оптимизацию компилятором? Используете ли С++, или только старый добрый С? Сколько вообще времени уходит на оптимизацию производительности в сравнении с реализацией непосредственно нового функционала?

На войне все средства хороши 🙂 Используем все выше перечисленное на уровне драйверов и ниже. Специфичный асм, конечно, генерируется из C-подобного кода для его последующей ручной оптимизации. Времени на все уходит много. Много исследований как в области качества, так и производительности, но на все есть дедлайн. Точной пропорции не скажу, но исследования, конечно, потребляют больше времени.

6. Насколько большая команда в Intel занимается мультимедийным направлением? Как сложно к вам попасть? 🙂

От железа, драйверов до различных SDK – это тысячи человек. Смотря на какую позицию вы метите 😉 В России (Москва и Нижний Новгород) есть большая команда, которая занимается Intel Media SDK. У них периодически появляются вакансии.

Вопрос RussianNeuroMancer

Проблема в железе или в драйвере?

Тут скорее всего в драйвере. На Windows – это известная проблема некоторых ограничений на уровне ОС. Но она решаема. Более доступно и подробно я писал здесь.

Вопрос Ilya_Smelykh

Будет ли аппаратная colorspace конвертация для большинства популярных форматов? Что насчет аппаратного деинтерлейсинга?

Все это есть. Планарные и упакованные форматы. Дальше будет больше. Деинтерлейсинг также поддерживается.

Вопрос Aingis

Как известно, осенью прошлого года Эппл выпустили 13-дюймовый Макбук про с ретиной. В нём нет дискретной видеокарты и вся графика работает на Intel HD4000. Есть отзывы, что этой платформы просто не хватает для полноценной поддержки. Что Intel планирует, чтобы не уступать в плане графики хотя бы Айпаду с ретиной?

Я думаю, что графика развивается достаточно быстро и мощно. Intel Iris должен расставить все точки над i.

Вопрос diger

Расскажите пример кодирования видео на GPU в домашних условиях.

Самый частый пример – это кодирование для мобильных устройств. Если вы хотите за несколько минут транскодировать серию сериала в формат поддерживаемый мобильным устройством, а не ждать полчаса, то QuickSync вам в помощь.

Вопрос Russelll

Будут ли 64 битные драйвера для intel 3650?

Прошу прощения, но не обладаю такой информацией. Но тема горячая судя по форумам.

Вопросы sancho2222

1. Есть ли в процессорах Intel что то похожее на KUDA?

Имеется ввиду Nvidia CUDA? Ответ — Intel OpenCL.

2. Какие необходимы библиотеки для использования графических возможностей процессора Intel, в частности: кодирования\декодирования h.264?

Все, что вам нужно – это Intel Media SDK.

3. Хватит ли производительности процессора Intel i7-3517UE для одновременного декодирования и кодирования видео разрешения 960*720 в H.264?

Да, безусловно. И даже в несколько потоков.

4. У меня проблема с процессором Intel Atom(tm) N2800. Может вы сможете мне помочь. Я декодирую с помощью ffmpeg H.264 с камеры Logitech C920, разрешение видео 960*720. После декодирования я получаю формат кадра YUYJ420. С таким разрешением я могу декодировать 2 потока по 24 кадра в секунду с вышеуказанным разрешением, но если я переворачиваю видео после декодирования на 270 градусов, то упираюсь в ограничения КЭШа (как я понимаю), и в итоге могу использовать только 20 кадров в секунду и один поток, если увеличить количество кадров, то видео разваливается на квадратики и жутко тормозит. Подскажите пожалуйста в чем может быть проблема? точно это КЭШ?

Скорее всего вы упираетесь в общую производительность системы. Все операции происходят на цетральном процессоре и с двумя потоками плюс постпроцессинг он уже не справляется. Чтобы отыграть задержки ffmpeg начинает скипать фреймы, поэтому вы наблюдаете артефакты. Какой CPU usage при этом?
Я не совсем понял какой формат на выходе. YUV420? В зависимости от формата необходим разный набор операций для поворота. Ну и кэша там мало, а он, как известно, влияет на скорость.

Вопрос yurasek

Меня интересует каков потенциал встроенной в процессоры Intel Core 2-го и 3-го поколения логики при аппаратном декодировании h.264? То есть сколько, например, потоков h.264 в режиме реального времени с разрешением 1280 x 720 (1920 x 1080) / 25 кадров в секунду сможет обработать процессор Intel i7-3770 с использованием именно аппаратного декодирования (если при этом программный код будет в идеале максимально оптимизирован) для последующего вывода на экран? На сколько при этом будут задействованы ресурсы других блоков процессора?

Хороший вопрос. Количество потоков физически упирается только в графическую память. До тех пор пока памяти достаточно для выделения поверхностей все должно работать. Другой вопрос производительность. Зависит от контента, который вы собираетесь декодировать. Другими — словами, в зависимости от того как стримы были закодированы – это занимает разное кол-во времени и ресурсов. Принимая во внимание все эти факторы (и многие другие) моя грубая оценка из головы составляет до 20 реал тайм сессий одновременно.

Компьютер для домашнего видеомонтажа

  1. Процессор
  2. Оперативная память
  3. Видеокарта
  4. Звук
  5. Платы ввода видео
  6. Дисковая подсистема
  7. Монитор
  8. Материнская плата
  9. Остальное
  10. Заключение

Споры по поводу выбора компьютера для видеомонтажа никогда не утихают, о чем свидетельствует соответствующая ветка в нашем форуме. Что лучше: Intel или AMD, Western Digital или Seagate, Asus или Gigabyte, Cola или Pepsi — эти вопросы из года в год вызывают эмоциональные дискуссии самого разного уровня во всех уголках Рунета. Принимаясь за такую щекотливую тему, чувствуешь себя канатоходцем перед выступлением — на такую тревожную, неопределенную и обманчивую стезю предстоит вступить. Принимая во внимание специфику темы, в этой статье мы решили сдвинуть акцент в теоретическую область, по возможности, воздержавшись от оценок конкретных экземпляров оборудования. С одной стороны, выбранный подход продлит срок актуальности статьи, с другой стороны, уменьшит поток гневных комментариев, всенепременно образующийся в результате расхождения высказанных в статье идей и мнения некоторых читателей.

Примем как данное, что, так как процесс обработки видео всегда связан с длительными пересчетами и рендерингами, загружающими систему под 100%, первостепенное требование к видеомонтажному компьютеру — надежность. Сбой или зависание, например, игрового компьютера чреваты однократной перезагрузкой, что, конечно, неприятно, но отнюдь не критично. Зависание рабочего компьютера где-нибудь на 80% многочасового пересчета проекта совершенно недопустимо. Производительность по степени важности следует поставить на второе после надежности место.

1. Процессор

Обычно на процессор компьютера тратится наибольшая часть бюджета, так как в глазах неискушенного пользователя параметры этого элемента напрямую ассоциируются с «крутостью» компьютера. Давайте попробуем разобраться, насколько он в действительности важен, ответив на самый очевидный вопрос: а зачем он нужен? Процессор в основном влияет на два «видеомонтажных» параметра:

  1. Мгновенный комфорт работы.
  2. Время ожидания результата.

Мгновенный комфорт работы — эта общая отзывчивость и скорость реакции системы на действия пользователя. При видеомонтаже она обычно сводится к скорости рендеринга предпросмотра. А именно: при какой сложности монтажа вы сможете получить плавное realtime-превью. В тривиальном случае, ограничивающимся нарезкой исходного DV-видео, сменой последовательности фрагментов и заменой звуковой дорожки, с такой задачей вполне справится и Celeron 2.0 GHz. При наложении эффектов, переходов, цветокоррекции, компоузинге и т.д. разумеется, желателен более быстрый процессор, однако не стоит забывать, что комфорт монтажа — количественная, а не качественная характеристика. Это означает, что, с одной стороны, даже Celeron 2.0 GHz не накладывает принципиальных ограничений на процесс монтажа, а, с другой стороны, и для самого современного процессора можно найти задачу, с которой он не справится в реальном времени.

Второй процессорозависимый параметр — время ожидания результата. Им будем называть время, необходимое компьютеру для рендеринга смонтированного ролика в выходной файл. Пожалуй, этот параметр не имеет принципиального значения. Редко кто во время многочасового рендеринга сидит и неотрывно следит за продвижением индикатора готовности. В большинстве случаев, просчет происходит в фоновом режиме при уменьшенном приоритете процесса кодера. Пользователь при этом спокойно занимается своими делами. Рост частоты процессора обеспечивает приблизительно линейное снижение времени ожидания.

Наряду с этими основными параметрами, есть еще несколько менее значимых, но требующих к себе внимания.

Во-первых, благодаря «заслугам» маркетинговой политики, с недавнего времени тип процессора начал ограничивать выбор программного обеспечения, которым сможет воспользоваться пользователь. Например, Adobe Premiere Pro 2.0 отказывается запускаться на процессорах, не поддерживающих набор инструкций SSE2, хотя объективных причин для подобного ограничения не наблюдается. Таким образом, волей-неволей приходится постепенно отказываться от использования устаревших процессоров, даже если их производительность вас вполне устраивает.

Во-вторых, многоядерность. Необходимо помнить, что на сегодняшний день далеко не все программное обеспечение для работы с видео хорошо распараллеливается. Если наличие двух ядер (или хотя бы Hyper-Threading’a) в любом случае оправдано за счет того, что определенно применимо для облегчения фонового просчета, то большее число ядер может оказаться невостребованным.

В-третьих, немаловажный параметр — энергопотребление и, соответственно, тепловыделение и шумность. Для студийного компьютера, он, конечно, не играет принципиальной роли, а для домашнего весьма значим. Мало приятного, если компьютер будет докучать вам назойливым гулом во время многочасовых просчетов, способных случайно затянуться и за полночь. Intel и AMD в последнее время, наконец, озаботились данной проблемой, и сегодня можно без особенных финансовых вложений обеспечить достойное охлаждение ЦП малошумным кулером. Сделать это тем проще и дешевле, чем современнее модельный ряд выбранного процессора, но ниже его производительность.

Исходя из вышесказанного, сформулируем основные правила выбора процессора для абстрактного видеомонтажного компьютера:

  1. Выбор производителя процессора должен базироваться на анализе текущей, на момент покупки, ситуации на рынке.
  2. Процессор должен принадлежать к наиболее современной и перспективной линейке.
  3. Конкретный рейтинг по производительности имеет лишь количественное значение, и должен приниматься во внимание в последнюю очередь при наличии свободных средств.

2. Оперативная память

При выборе оперативной памяти необходимо различать две группы характеристик:

  1. Объем.
  2. Скоростные характеристики, складывающиеся из типа памяти, режима работы, рабочей частоты, латентности.

С объемом все просто. Представить себе современный компьютер с объемом памяти менее 256 МБ довольно затруднительно, так как планок DDR2 меньшего объема нет в продаже. Этот объем и стоит признать минимально допустимым, хотя, конечно, о комфортной работе в этом случае мечтать не приходится. Adobe Premiere Pro 2.0 сразу после запуска, с пустым проектом занимает в памяти приблизительно 300МБ. Если принять во внимание интересы операционной системы и еще десятка сопутствующих активной монтажной работе утилит, сойдемся на том, что 1 ГБ на сегодняшний момент оптимальный объем. 2 гигабайта, конечно, тоже пригодятся, но уже для достаточно специфических задач — когда в работе над проектом  одновременно используется несколько тяжелых приложений, например, Premiere, Audition и Photoshop. Едва ли можно назвать подобные действия любительским монтажом. Не забывайте, что нехватка памяти также негативно влияет и на мгновенный комфорт работы, причем гораздо драматичнее, чем неторопливость центрального процессора. Поэтому в случае выбора между мощностью процессора и достаточным объемом памяти всегда следует отдавать предпочтение второму варианту.

Из скоростных характеристик памяти следует уделять внимание только двуканальному режиму работы. Отказываться от практически бесплатного увеличения производительности нерезонно, так что позаботьтесь о паре модулей. Можно было бы задуматься над выбором типа памяти, но сегодня системы на базе DDR-II получили безоговорочное преимущество — на нее рассчитано подавляющее большинство современных материнских плат. Поэтому выбора нет, и голову не сломаешь. Что касается рабочей частоты и латентности — эти параметры незначительно влияют на производительность при обработке видео, так что ими можно пренебречь – лишь бы заработало.

3. Видеокарта

Как ни странно, но процесс обработки видео никак не оптимизируется видеокартой (по состоянию на 2009 год данное утверждение спорно: см. CUDA — прим. ред.). Конечно, это утверждение не касается профессиональных программно-аппаратных комплексов, но на момент написания статьи относится ко всем «народным» видеокартам. А как же аппаратное ускорение декодирования и кодирования видео, возмутятся производители видеокарт? С декодированием очень просто: мало того, что современные процессоры без проблем справляются с декодированием практически любых потоков, вплоть до MPEG4 AVC 1920×1080, так ускорение от аппаратного декодирования в сравнении с хорошо оптимизированными софтверными декодерами если и есть, то измеримо всего десятком-другим процентов (см. статью «Практическое тестирование видеокарт ATI и NVIDIA в задачах декодирования видеоданных»). С кодированием ситуация не менее туманная (см. тестирование «ATI AVIVO: Часть 1: Видеокодирование»). Пока ни о каком серьезном применении данной функции говорить не приходится, а если даже производители со временем и доведут ее до ума, позвольте предположить, что работать она будет только в проприетарном софте, разумеется, выполненном в плюшкообразном стиле, с максимально урезанными возможностями и обязательной поддержкой сменных скинов.

Так что при выборе видеокарты необходимо осознанно и хладнокровно игнорировать все традиционные характеристики: чипсет, количество памяти, разрядность шины, число конвейеров и т.д. Никакая видеокарта, выпущенная с 2001 года, не ограничит ваши возможности по обработке видео, за исключением случаев использования специальных плагинов или фильтров, охочих до ресурсов GPU видеокарты.

Главное, с чем вы должны определиться — это с числом мониторов, которые вы собираетесь использовать. Если их больше одного, встроенное в материнскую плату видео не вариант. В этом случае подойдет самая простая видеокарта с двумя выходами от надежного производителя. Не стоит брать дешевый noname — такая карта может уменьшить стабильность системы, а также подвести в качестве 2D изображения.

4. Звук

Для исключительно видеомонтажного компьютера аудиокарта не имеет никакого значения — так как вся обработка звука производится в цифровом виде, конкретное звуковоспроизводящее оборудование на результате никак не сказывается. Главное, чтобы звук был слышен — что обеспечит как интегрированная в материнскую плату аудиокарта, так и любая, приобретенная отдельно (PCI-плату подобрать нетрудно, заглянув в раздел Цифровой звук). Если ваша работа подразумевает серьезную обработку звука, выбрать аудиокарту вам помогут коллеги из раздела «ProAudio».

5. Платы ввода видео

Платы ввода видео делятся на два принципиально разных типа:

  1. Цифровые.
  2. Аналоговые.

Цифровые — это суть FireWire/IEEE1394 контроллеры, позволяющие копировать видео с цифровых DV/miniDV камкодеров. По своей функциональности они больше всего напоминают USB2.0 контроллеры, да и интерфейсы USB2.0 и FireWire, с пользовательской точки зрения, довольно схожи. FireWire контроллеры также делятся на два типа — дешевые (7-15$ в Москве) и дорогие (>25$). В плане копирования информации с видеокамер, дорогие отличаются от дешевых ценой и абсолютно ненужным проприетарным программным обеспечением, идущим в комплекте. К сожалению, стандарт IEEE1394 при всех своих преимуществах относительно USB2.0 (о которых можно почитать тут), обладает громадным недостатком — низкой практической совместимостью с оборудованием. Вне зависимости от цены и производителя контроллера, всегда имеется некоторая вероятность того, что ваша конкретная камера откажется с ним работать (об этом факте свидетельствует эта и эта ветки нашего форума). Лучше заранее к этому приготовиться и приобрести контроллер с moneyback. Если планируете использовать контроллер не только для подключения камеры, но и, например, жестких дисков, обратите внимание на наличие molex-разъема для дополнительного питания 12V от БП, а также на платы следующего поколения IEEE1394b.

Аналоговые платы видеоввода — гораздо более сложные устройства. Это не просто контроллеры интерфейса, но специализированные аналого-цифровые преобразователи, аппаратно реализующие сложный процесс оцифровки видеосигнала. Такие платы необходимы для работы со старыми пленочными архивами. Аналоговые платы видеоввода можно разделить на три вида:

  1. Простые АЦП.
  2. ТВ-тюнеры.
  3. АЦП с расширенными аппаратными средствами.

Первые — простые АЦП — это как раз то, что вам нужно. На таких картах нет ничего, кроме собственно АЦП и PCI-моста. Для оцифровки видео более ничего и не нужно, так как весь процесс постобработки вполне может выполнить центральный процессор, благо современные мощности позволяют делать это в реальном времени. Классический пример такой платы — PixelView xCapture, при цене в 25$, дающий вполне достаточное для оцифровки домашних архивов качество. К сожалению, такие решения малопопулярные, и найти подобные карты в продаже затруднительно.

Гораздо популярнее второй тип — TV-тюнеры. Если от TV-тюнера отбросить приемник TV и FM сигналов, аппаратный MPEG-кодер, чипы постобработки, пульт ДУ, комплектный софт и коробку — получится аккурат «Простой АЦП». TV-тюнеры дают качество не хуже, чем «Простые АЦП», но стоят дороже (~50-60$), однако продаются в любом компьютерном магазине. При выборе тюнера для оцифровки собственных записей необходимо обратить внимание на современность чипсета (Conexant CX23881 или Philips SAA7135HL), а также на возможности комплектного программного обеспечения. Хорошим программным обеспечением славятся платы марки Beholder и GoTView. Дополнительные аппаратные возможности, MPEG кодер и шумодав, не имеют принципиального значения.

АЦП с расширенными аппаратными средствами — это собственно платы видеомонтажа. Стоят они значительно дороже тюнеров и тем более «простых АЦП», и для домашнего видеомонтажа не представляют интереса. Функции, в них заложенные, обычно жестко привязаны к конкретному программному обеспечению, а аппаратные возможности могут быть интересны только в профессиональной сфере для ускорения просчета эффектов при конвейерном производстве роликов.

6. Дисковая подсистема

Ничто так не влияет на комфортность работы с видео, как организация дисковой подсистемы. У вас может быть медленный процессор, плохонькая видеокарта, немного памяти — но если при этом дисковая подсистема организована идеально, работа пойдет уверенно.

Ведь процесс обработки видео состоит преимущественно из операций копирования. Экспортируете готовый проект из любой монтажки — диск копирует все задействованные фрагменты. Накладываете фильтр очистки в VirtualDUB — весь файл считывается и переписывается на новое место с наложенным эффектом. Авторите DVD из подготовленных MPEG’ов — диску снова нужно перелопатить гигабайты. А ведь видеофайлы занимают довольно большой объем (13 ГБ/час в формате DV). Естественно, что один диск посредственно справляется с операциями считывания и записи одновременно, поэтому для ускорения работы крайне рекомендуется использовать как минимум два жестких диска. Организовав перекрестную работу этих дисков, вы заметно повысите быстродействие. Еще лучше выделить отдельный диск для операционной системы и отдельный — для результатов работы, и еще один для бэкапов и вторичных свопов.

Раз дисков в компьютере будет много, гнаться за рекордными показателями каждого из них смысла нет. Подойдут любые диски с SATA-интерфейсом и оптимальным на день покупки соотношением цена/объем. Диски средней ценовой категории от разных производителей имеют практически одинаковые скоростные характеристики. Об их надежности можно долго спорить, но, на самом деле, исключая провальные линейки (например, IBM DTLA), процент брака у всех производителей приблизительно одинаковый и специально озадачиваться им не стоит. Что касается провальных линеек… Достоверная информация об этом все равно появится не раньше, чем через полгода после покупки. Так что выбирать можно любые диски, но из соображений шумности не рекомендуется использовать HDD разных производителей. Спектры их шумов различаются, что в итоге на слух воспринимается хуже, чем монотонное гудение/стрекотание.

Один из самых больших видеомонтажных мифов — миф о RAID0-массивах. Напомню, что RAID0 массивом называется такая конфигурация дисков, при которой данные распределяются равномерно сразу по всем дискам. Емкость RAID0 массива равна сумме емкостей входящих в него дисков, скорость работы пропорциональна (не прямо, но монотонно) числу входящих в массив дисков. Несомненно, пара дисков, сконфигурированных в  RAID0, работает значительно быстрее одиночного диска, но в потоковых операциях чтение-запись (самых важных в монтаже!) она проигрывает тем же самым дискам, сидящим раздельно по-простому на разных каналах IDE контроллера. Это понятно: копируя файл сами на себя, оба диска RAID0 массива вынуждены постоянно перемещать головки туда-сюда — там прочитать, тут записать, прочитать-записать и т.д. Если диски работают раздельно, то один из них, не прерываясь, занимается чтением, а второй — записью, причем с максимально возможной для него скоростью.

Для подтверждения последних утверждений мы подготовили небольшое сравнительное тестирование производительности RAID0 массива и одиночных дисков. С помощью двух одинаковых дисков Seagate Barracuda 7200.7 120 GB были сэмулированы два противоположных подхода в организации дисковой подсистемы. В первом мы максимально приблизились к варианту «как не надо делать» — диски были сконфигурированы в RAID0 средствами встроенного в материнскую плату Abit IT7 контроллера Highpoint HPT-374 с размером страйпа по умолчанию — 64К. Затем массив был разбит на два логических раздела, на один из которых был установлен Windows XP SP2, а второй был выделен для работы видео.

Во втором случае диски были подключены к этому же контроллеру, но работали независимо друг от друга. Один из них — системный — был также разбит на два логических раздела, на одном из которых была установлена ОС (в обоих случаях ОС восстанавливалась из одного и того же заранее приготовленного образа), а второй использовался для организации перекрестной работы дисков. Кроме упомянутых комплектующих в конфигурацию тестового компьютера входили: CPU Celeron [email protected] ГГц, RAM 1024 DDR, Radeon 9550. Все операции производились над стандартным DV файлом объемом 2 784 917 KB.

Операция

Время выполнения, сек

RAID0

2х120 IDE

1. Копирование файла cредствами Windows

207

85

2. Копирование файла cредствами VirtualDubMod’a (DirectStreamCopy)

257

164

3. Выделение аудиодорожки средствами VirtualDubMod

78

59

4. Импорт файла в Premiere Pro 2.0

34

44

5. Рендеринг простого проекта из Premiere Pro 2.0 (смена последовательности видеофрагментов, наложение музыки)

197

199

6. Средняя скорость линейного чтения в начале дисков

93 (МБ/сек)

54 (МБ/сек)

В первых трех пунктах мы видим закономерное отставание RAID0 массива. Разрыв сильно сокращается в третьем тесте, в котором операций чтения становится гораздо больше, чем записи. В этом тесте дискам нужно было прочесть 2.65 гигабайта, а записать лишь около 140 МБ. В четвертом тесте RAID0 вырвался вперед, что легко объяснимо: импорт DV-файлов в Premiere Pro 2.0 сводится к созданию графического образа аудиодорожки, так называемого, Peak File’a, объем которого составил всего лишь 500 КБ. Таким образом, время выполнения этой операции определяется преимущественно скоростью линейного чтения, которой RAID0 может похвастаться. Результаты пятого теста довольно неожиданны — вместо ожидаемого проигрыша RAID0, мы видим практически одинаковые показатели. Видимо, это объясняется грамотной оптимизацией алгоритмов работы Premiere Pro 2.0 под самые разные дисковые подсистемы. Наконец, последний синтетический тест демонстрирует закономерное преимущество RAID0. Цель последнего теста — приблизительно оценить общую производительность RAID-контроллера. Более современные контроллеры (например, Sunix 2020) позволяют получить скорость линейного чтения порядка 110 МБ/сек (почти предел для шины PCI!) при скорости каждого диска в 65 МБ/сек. Таким образом, для современных систем результаты RAID0 были бы несколько лучше, однако общая тенденция очевидна.

Кроме производительности, есть такой немаловажный момент, как надежность. Очевидно, что надежность двухдискового RAID0 массива в два раза меньше надежности одиночного диска, но, на самом деле, она еще ниже! Обычно, когда разговор заходит о RAID0, подразумевается схема его создания на базе интегрированного в материнскую плату контроллера. Это довольно утопичный путь. Проанализируем вероятность потери данных в этом случае. К удвоенной вероятности «смерти» HDD добавляется еще и вероятность выхода из строя материнской платы, которая, к слову сказать, достаточно высока. Действительно, на системной плате разведена масса самых разнообразных элементов, связанных воедино физически и электрически. Так как смерть любого из них практически однозначно означает выход из строя всей платы, материнскую плату можно признать одним из самых ненадежных элементов компьютера. Интегрированные контроллеры бывают двух типов — разведенные на материнской плате независимые чипы, подключаемые к шине PCI или PCI-E, и встроенные на уровне чипсета. Итак, что произойдет с данными RAID0-массива, если сгорит плата с разведенным контроллером? Ничего не произойдет, но достать их с массива окажется крайне нетривиальной задачей. Непрофессиональные контроллеры создают «нетранспортабельные» RAID-массивы, которые можно «поднять» только на контроллерах того же производителя, да и то не всех версий. С неработоспособной материнской платой на руках вы окажетесь в очень незавидной ситуации: чтобы восстановить данные массива, придется искать либо материнскую плату с точно таким же интегрированным контроллером, либо покупать этот контроллер отдельно. С приходом поддержки RAID на уровне чипсета ситуация, несомненно, улучшилась, однако в любом случае в неприятном положении с «трупом» на руках (яркий пример) вы будете сильно ограничены в выборе его замены!

Изложенные соображения ни в коей мере не ставят своей целью поставить на RAID0 крест. Это замечательный метод увеличения производительности, но он не терпит легкомысленного подхода и жестоко карает «авосьников». Если вы все же решитесь собрать RAID0 массив, учтите, что RAID0 оправдан только при соблюдении следующих условий:

  1. Суммарно в системе есть не менее трех физических жестких дисков.
  2. Массив будет собран на отдельном контроллере на интерфейсе PCI/PCI-Express.
  3. Организован частый и регулярный бэкап с RAID0.
  4. Компьютер собран в высококачественном корпусе с хорошей системой охлаждения и надежным питанием.

Кстати, об отдельных PCI и PCI-Express RAID-контроллерах. Их можно разделить на два принципиально разных типа:

  1. «Аппаратные»
  2. «Программные»

«Аппаратными» принято считать все контроллеры, обладающие собственной набортной памятью, а «программными», соответственно, «беспамятные». К первому типу относятся преимущественно профессиональные решения, использующиеся вовсе не для домашнего видеомонтажа, а для разнообразных серверов и других задач совершенно другого уровня. Они обладают специализированными мощными процессорами для управления RAID-массивами, их функциональный набор слишком широк и специфичен, что закономерно сказывается и на цене.

Кавычки в названии типов контроллеров не случайны — очевидно, что никакое физическое устройство невозможно назвать программным в полном смысле слова. «Программными» контроллеры стали в результате пренебрежительного отношения к принципу их работы со стороны пользователей «аппаратных» контроллеров. По сути, «программные» контроллеры — лишь интерфейс для создания массива, все вычислительные процессы по обслуживанию которого осуществляются за счет ресурсов центрального процессора посредством драйвера контроллера. Возможности таких контроллеров не особо отличаются от встроенного в Windows XP средства для создания полностью программных RAID-массивов. Однако для современных процессоров обслуживание массива RAID0 совершенно не проблема, в этом смысле «программные» контроллеры не хуже «аппаратных».

Какие бывают «программные» контроллеры? Как и FireWire контроллеры — дешевые и дорогие. Дорогие — от именитых Highpoint, Promise и т.д. — основаны на чипах их собственной разработки, но принципиально никак не отличаются от дешевых — от разных производителей на логике Silicon Image.

7. Монитор

Хоть видеоплата играет в видеомонтажном компьютере не значимую роль (по состоянию на 2009 год данное утверждение спорно: см. CUDA — прим. ред.), о мониторе такого не скажешь. Несмотря на бурное развитие жидкокристаллических моделей, сегодня оптимальными по соотношению цена/качество остаются ЭЛТ мониторы. Почему? Если не брать во внимание слабую цветопередачу большинства ЖК мониторов, они до сих пор в два-три раза дороже ЭЛТ мониторов при одинаковом качестве и размере.

К сожалению, по маркетинговым соображениям выпуск ЭЛТ мониторов высокого класса прекращен, так что остается довольствоваться вторичным рынком, либо все же приобрести ЖК монитор. Выбирая монитор, учитывайте, что для домашнего монтажа основным параметром является рабочее разрешение. Обычно оно увеличивается пропорционально диагонали монитора. От величины рабочего пространства комфортность работы зависит драматично. Ведь кроме окна с полноразмерным видео вам нужно уместить на экране еще множество окошечек с настройками и кнопочками. Как показывает практика, мониторы, как и жесткие диски, могут брать числом. Удвоение числа мониторов увеличивают удобство работы больше, чем в два раза. Например, субъективно, работать с двумя мониторами с разрешением 1280х1024 несравнимо удобнее, чем с одним 1600х1200, хотя виртуальная площадь рабочей поверхности в первом случае лишь в 1,36 раза больше, чем во втором. Определиться с конкретной моделью вам помогут коллеги из раздела «Мониторы, видеовыход и TV/FM-тюнеры».

Приход материнских плат с поддержкой SLI принес пользу не только геймерам, но опосредовано и видеомонтажерам. Дело в том, что наличие двух слотов PCI-Express x16 на некоторых современных платах позволяет установить две видеокарты, но использовать их независимо друг от друга. Таким образом, число мониторов можно легко увеличить вплоть до 4х. В многомониторной конфигурации мониторы совсем не обязательно должны быть одинаковыми. Это очень кстати при наличии старого 14-15” монитора с разрешением 800х600х85: его удобно использовать в качестве «просмотрового окна» в дополнение к двум основным. В идеале роль просмотрового окна лучше переложить на телевизор. В этом случае вы сразу будете видеть ваше творение в наиболее естественных для него условиях (если только вы не собираетесь просматривать его в будущем только на компьютере).

8. Материнская плата

Когда вы определились с остальным оборудованием, имеет смысл выбрать материнскую плату. К сожалению, дать универсальные рекомендации на этот счет сложно. Разумеется, плата должна поддерживать выбранный тип процессора и памяти, но рациональнее обеспечить совместимость с будущими процессорами, выбрав самый современный чипсет и наиболее обнадеживающий сокет. На сегодняшний день для систем на базе процессора Intel оптимальны платы с Intel’овским чипсетом и Socket 775. Если вы планируете использовать (пусть даже и в перспективе) более двух видеовоспроизводящих устройств, подумайте о плате с двумя слотами PCI-Express 16x. Современные видеокарты для PCI и PCI-E1x, конечно, тоже есть в продаже, но мало распространенны и дороже популярных 16х аналогов. Если вы твердо уверены, что больше двух мониторов на вашем рабочем столе не окажется, рациональнее взять материнскую плату с одним слотом PCI-E x16, но, возможно, с большим выводком других «писиаев».

С точки зрения надежности, плата должна быть максимально «простой» — по возможности, без дополнительных интегрированных контроллеров (RAID, LAN и т.д.). Ведь чем сложней разводка, тем меньше надежность, а необходимый контроллер можно всегда купить во внешнем исполнении за символические деньги. Не стоит гнаться за встроенным FireWire контроллером. В отличие от своих внешних PCI и PCI-Express аналогов, он, скорее всего, не будет иметь разъема для дополнительного 12V питания, а в случае несовместимости с тем или иным оборудованием извлечь его из системы и заменить будет весьма проблематично.

Выбирая производителя, помните, что даже у таких именитых из них, как Asus, случаются неудачи. Пожалуй, единственный, кто в последние годы не посадил ни одного пятна на свою репутацию в плане надежности — это корпорация Intel, однако ее платы предназначены, скорее, для профессиональных применений, и в домашних условиях неоправданны. Аппроксимируя, заключим, что наиболее популярные брэнды в единой ценовой категории в среднем по времени предлагают приблизительно одинаковые как по надежности, так и по производительности устройства. Выбирать конкретную модель следует, скорее, отталкиваясь от фактических характеристик платы.

9. Остальное

Так как приоритетным фактором для видеомонтажного компьютера является стабильность, особое внимание следует обратить на его корпус. Экономить на этом элементе категорически запрещено! Для улучшения конвекции и, следовательно, охлаждения, корпус должен быть просторным. При большом числе жестких дисков необходимо их активное охлаждение. Декларируемая мощность блока питания, к сожалению, однозначно ничего не говорит о его качестве, так что не стоит стремиться к многоваттности. Тут, наконец, можно расслабиться и ориентироваться просто по цене: такие фирмы как Chieftec, 3R System, Thermaltake, производят достойные корпусы, что самым прямым образом сказывается на их стоимости.

Все DVD-RW приводы, кроме изделий фирмы Plextor, сейчас имеют практически одинаковые характеристики и стоят смешные деньги. Если на выбранной материнской плате найдется пара IDE-разъемов (что, к сожалению, весьма маловероятно), обратите внимание на возможность установить два привода DVD-RW. Архивы проектов, DVD с готовыми фильмами, неиспользованные сцены, сборники звуков и видеоотрывков — все это предстоит записывать часто и помногу, и в этом важном деле второй привод окажется удачным подспорьем (при использовании хотя бы двух жестких дисков, разумеется – в одиночку даже RAID0 не справится с одновременной записью двух болванок 16х).

10. Заключение

В изложенной точке зрения на видеомонтажный компьютер отсутствовал догматический мотив, а рекомендации по конкретному оборудованию были сведены к минимуму. Надеемся, что материал поможет читателям получить общее представление о наиболее важных аспектах выбора комплектующих для оптимизированного для работы с видео ПК. Как видите, процесс конфигурирования и сборки такого компьютера достаточно вариативное, творческое и интересное дело. При соответствующем подходе озвученная методика позволяет собирать компьютеры в широком ценовом диапазоне — от $600 до $2000. Система, собранная в экономном варианте, обещает быть легко  масштабируемой, и в будущем, при необходимости, без труда «плавно превратится» в более производительную.

Однако не забывайте: сколько бы гигагерц ни держал ваш процессор, сколько бы гигабайт ни вмещали жесткие диски, сколько бы дюймов ни было в мониторе — качество выходного продукта определяется исключительно вашим творческим потенциалом и желанием делать хорошие фильмы.

 [Все статьи в разделе «Цифровое Видео»]

Недорогая, но мощная конфигурация компьютера для видеомонтажа

Работа в видеоредакторах Adobe Premiere Pro или Sony Vegas, а также в Photoshop или After Effects требует высокой производительности компьютера. Но что делать, если не хочется тратить много денег на сборку такой системы. С помощью б/у комплектующих из Китая получится мощная конфигурация для видеомонтажа.

И пусть вас не пугает, что речь пойдет о вторичном рынке комплектующих. Мы рассмотрим серверные процессоры, которые верой и правдой служили в серверах, но их заменили на более новые. Они не разгонялись, не перегревались и находятся в отличном состоянии. Более того, некоторые серверные процессоры не уступают по производительности современным Intel Core i7 и i9. А еще для них можно купить дешевую серверную оперативную память и абсолютно новые материнские платы. Но обо всем по порядку.

Мы подберем две сборки: простую и продвинутую. Первая версия подойдет для начинающих видеомонтажеров или блогеров — ее хватит для производства 10-15-минутных роликов с небольшим набором эффектов в разрешении до 4К включительно. Вторая — для более серьезных задач, включая 3D-моделирование.

Простая конфигурация компьютера для видеомонтажа

Ничего лишнего и не слишком дорогого. Но сразу отмечу: мы не экономим. Это система для начала — ее можно апгрейдить, точечно меняя/добавляя комплектующие. Обе вариации собирали на сокете 2011, так как считаем его единственным актуальным в 2018-2019 годах. Там есть все современные интерфейсы, огромный выбор различных процессоров и большой объем поддерживаемой оперативной памяти. Именно максимальное количество ОЗУ для монтажа и работы с графикой является приоритетом. Далее идет процессор, а на видеокарте вообще можно сэкономить.

Наша сборка:

Процессор: Intel Xeon E5 1650 V2 (6 ядер,12 потоков, 3,5 ГГц) за $124

Материнская плата: HUANAN X79 V2.49 за $97

Видеокарта: GTX 750 TI за $54

RAM: 16 GB ECC REG 1866 МГц (8х2) за $64

SSD: 250GB SSD KingDian за $35

HDD: 2 ТБ Seagate (7200 об/мин, 256 мб кэш) за $70

Кулер: Segotep T5 (5 медных трубок) за $23

БП: от 550 Вт от $50

Корпус: любой, но с 2-3 кулерами в корпусе


На такой системе можно комфортно монтировать даже в 4К разрешении. Тут мощный шестиядерный процессор и достаточное количество оперативной памяти. В будущем можно докупить еще две плашки, расширив объем ОЗУ до 32 ГБ. Все комплектующие, кроме блока питания и корпуса, советуем брать на AliExpress. Ссылки оставили напротив каждой позиции.

Кулер для процессора хороший, но его хватит впритык. Если планируете разгонять, чего я не вижу смысла делать, нужно смотреть более дорогое охлаждение, желательно водяное.

Полный комплект обойдется примерно в 530 долларов. Стоит отметить, что аналогичный по производительности компьютер в обычном магазине обойдется минимум в 2,5 раза дороже.

Мощная видеокарта для большинства программ видеомонтажа не требуется. Но она все же нужна. Мы включили самую доступную и надежную видеокарту, на которой в случае чего можно даже монстров покрошить в популярных онлайн-игрушках.

Если планируете работать в DaVinci Resolve, рекомендуем присмотреться к топовым GTX 1080 (TI), оставив все остальные комплектующие.


Продвинутая конфигурация

В более мощной системе оставили ту же материнскую плату. Ее вполне хватит, так как она имеет оптимальное количество портов и выходов. Да и превратить нашу «простую» сборку в продвинутую будет значительно легче. Для этого достаточно будет заменить процессор и добавить оперативки.

Вот что вышло:

Процессор: Intel Xeon E5 2680 V2 (10 ядер,20 потоков, 2,8 ГГц) за $190

Материнская плата: HUANAN X79 V2.49 за $97

Видеокарта: GTX 750 TI за $54

RAM: 64 GB ECC REG 1866 МГц (16х4) за $260

SSD: 250GB SSD KingDian за $35

HDD: 2 ТБ Seagate (7200 об/мин, 256 мб кэш) за $70

Кулер: Segotep T5 (5 медных трубок) за $23

БП: от 550 Вт от $50

Корпус: любой, но с 2-3 кулерами в корпусе


Менять остальные комплектующие нет смысла, так как основная нагрузка при монтаже идет именно на процессор и оперативную память. Такая система уже потянет монтаж полнометражных фильмов. Жестких дисков можно купить несколько, так как память для монтажеров никогда не будет лишней.

Прелесть наших сборок в том, что для апгрейда не нужно заново покупать множество комплектующих. В общем максимальная комплектация обойдется до 800 долларов. Забавно, но в местных интернет-магазинах столько стоит только набор оперативной памяти. Разница — только в цене.

Уже несколько лет рабочие станции на серверных процессорах являются эталоном для монтажа. Все дело в том, что они дешевле и производительнее современных Core i7. Сейчас появились Core i9, но стоят они значительно дороже, предлагая при этом не особо серьезные преимущества.

Мы упорядочили все лучшие предложения в каталог сборок ПК на серверных процессорах. Рубрика обновляется, поэтому тут всегда — лучшие предложения по самым низким ценам. Для удобства разбили комплектующие по категориям: дешевые до 200 баксов, среднебюджетные до 300 долларов и самые производительные решения.

Перейти в каталог

 

Для нас выбор очевиден. А что вы думаете по этому поводу? Пишите в комментариях!

Видеопроцессор MFT (Camerauicontrol.h) — приложения Win32

  • 2 минуты на чтение

В этой статье

Видеопроцессор MFT — это преобразование Microsoft Media Foundation (MFT), которое выполняет преобразование цветового пространства, изменение размера видео, деинтерлейсинг, преобразование частоты кадров, поворот, обрезку, пространственную распаковку левого и правого ракурсов и зеркальное отображение.

CLSID

CLSID_VideoProcessorMFT

Интерфейсы

Форматы ввода

  • MFVideoFormat_ARGB32
  • MFVideoFormat_AYUV
  • MFVideoFormat_I420
  • МФВидеоФормат_ИЮВ
  • MFVideoFormat_NV11
  • MFVideoFormat_NV12
  • MFVideoFormat_RGB24
  • MFVideoFormat_RGB32
  • MFVideoFormat_RGB555
  • MFVideoFormat_RGB565
  • MFVideoFormat_RGB8
  • MFVideoFormat_UYVY
  • MFVideoFormat_v410
  • MFVideoFormat_Y216
  • MFVideoFormat_Y41P
  • MFVideoFormat_Y41T
  • MFVideoFormat_Y42T
  • MFVideoFormat_YUY2
  • MFVideoFormat_YV12
  • МФВидеоФормат_ЮВЮ

Форматы вывода

  • MFVideoFormat_ARGB32
  • MFVideoFormat_AYUV
  • MFVideoFormat_I420
  • МФВидеоФормат_ИЮВ
  • MFVideoFormat_NV12
  • MFVideoFormat_RGB24
  • MFVideoFormat_RGB32
  • MFVideoFormat_RGB555
  • MFVideoFormat_RGB565
  • MFVideoFormat_UYVY
  • MFVideoFormat_Y216
  • MFVideoFormat_YUY2
  • MFVideoFormat_YV12

Поддерживаются не все комбинации форматов ввода и вывода.Чтобы проверить, поддерживается ли преобразование, установите тип ввода, а затем вызовите IMFTransform :: GetOutputAvailableType .

Дополнительные сведения об этих форматах см. В разделе GUID подтипа видео.

Замечания

Экземпляр видеопроцессора можно создать одним из следующих способов:

  • По телефону MFTEnumEx . Видеопроцессор зарегистрирован в категории MFT_CATEGORY_VIDEO_PROCESSOR .
  • Путем вызова функции COM CoCreateInstance , передав ей CLSID CLSID_VideoProcessorMFT .

Следующие примечания относятся к работе с прямоугольниками источника и прямоугольниками назначения в видеопроцессоре MFT . Прямоугольники источника и назначения устанавливаются с помощью IMFVideoProcessorControl :: SetDestinationRectangle и SetSourceRectangle , а иногда и IMFMediaEngineEx :: UpdateVideoStream .

  • Исходный прямоугольник должен быть выровнен и закруглен в соответствии с требованиями цветового формата кадра, вводимого в видеопроцессор.Это важно, поскольку такие форматы, как 420 и 422, предъявляют требования к размерам и смещениям, которые могут быть созданы и доступны. Например, исходный прямоугольник {1, 0, 319, 240} (левый, верхний, правый, нижний) будет округлен до {2, 0, 320, 240}, если входной формат равен 420.
  • И целевой, и исходный прямоугольники всегда будут зажаты, чтобы поместиться в их соответствующие кадры — исходный прямоугольник к исходному кадру и целевой прямоугольник к целевому кадру. Это означает, что отрицательные значения не имеют смысла — они всегда будут ограничены до 0.
  • Исходный прямоугольник находится в системе координат целевого кадра за вычетом любого целевого прямоугольника. Это означает, что преобразования, такие как вращение, «отменяются» в исходном прямоугольнике. Поэтому вам не нужно знать, было ли видео повернуто или распаковано в 3D. Например, вы можете нарисовать прямоугольник поверх тега видео, взять относительные координаты (относительно тега видео), нормализовать их (диапазон от 0 до 1) и передать их как исходный прямоугольник, и они должны работать должным образом, даже если видео поворачивается.

Видеопроцессор поддерживает обработку видео с ускорением на графическом процессоре с использованием Microsoft Direct3D 11. Для получения дополнительной информации см. MF_SA_D3D11_AWARE.

Стереоскопическое видео

Видеопроцессор поддерживает операцию распаковки вида на кадрах 3D-видео:

Если входной кадр содержит два вида, упакованных в один и тот же кадр, видеопроцессор может разделить виды на отдельные буферы или извлечь базовый вид и отбросить второй вид. Чтобы включить распаковку представления, установите для атрибута MF_ENABLE_3DVIDEO_OUTPUT значение MF3DVideoOutputType_Stereo или MF3DVideoOutputType_BaseView .

Требования

См. Также

Цифровые сигнальные процессоры

.

D3D11_VIDEO_PROCESSOR_FEATURE_CAPS (d3d11.h) — приложения Win32

  • 2 минуты на чтение

В этой статье

Определяет функции, которые может поддерживать видеопроцессор Microsoft Direct3D 11.

Синтаксис

  typedef enum D3D11_VIDEO_PROCESSOR_FEATURE_CAPS {
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_ALPHA_FILL,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_CONSTRICTION,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_LUMA_KEY,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_ALPHA_PALETTE,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_LEGACY,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_STEREO,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_ROTATION,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_ALPHA_STREAM,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_PIXEL_ASPECT_RATIO,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_MIRROR,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_SHADER_USAGE,
  D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_METADATA_HDR10
};
  

Константы

Имя Описание
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_ALPHA_FILL Видеопроцессор может устанавливать альфа-значения для выходных пикселей.Дополнительные сведения см. В разделе ID3D11VideoContext :: VideoProcessorSetOutputAlphaFillMode.
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_CONSTRICTION Видеопроцессор может уменьшить разрешение видеовыхода. Дополнительные сведения см. В разделе ID3D11VideoContext :: VideoProcessorSetOutputConstriction.
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_LUMA_KEY Видеопроцессор может выполнять манипуляцию яркости. Для получения дополнительной информации см. ID3D11VideoContext :: VideoProcessorSetStreamLumaKey.
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_ALPHA_PALETTE Видеопроцессор может применять альфа-значения из записей цветовой палитры.
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_LEGACY Драйвер не поддерживает все возможности обработки видео. Если этот флаг возможности установлен, видеопроцессор имеет следующие ограничения:

  • Поддерживаются максимум два потока:

    • Первый поток должен быть либо NV12, либо YUY2.
    • Второй поток должен быть AYUV, AI44 или IA44.

  • Элементы управления регулировкой изображения (proc amp) применяются ко всему blit обработки видео, а не к каждому потоку.
  • Поддержка планарного альфа-канала для отдельных потоков ненадежна. (Однако поддерживается попиксельный альфа-канал.)
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_STEREO Видеопроцессор может поддерживать 3D стерео видео. Дополнительные сведения см. В разделе ID3D11VideoContext :: VideoProcessorSetStreamStereoFormat.

Все драйверы, устанавливающие эти ограничения, должны поддерживать следующие стереофонические форматы: D3D11_VIDEO_PROCESSOR_STEREO_FORMAT_HORIZONTAL, D3D11_VIDEO_PROCESSOR_STEREO_FORMAT_VERTICAL и D3D11_VIDEO_PROCESSOR_STERE900_VIDEO_PROCESSOR_STER90.

D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_ROTATION Драйвер может повернуть входные данные на 90, 180 или 270 градусов по часовой стрелке в рамках операции обработки видео.
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_ALPHA_STREAM Драйвер поддерживает вызов VideoProcessorSetStreamAlpha.
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_PIXEL_ASPECT_RATIO Драйвер поддерживает вызов VideoProcessorSetStreamPixelAspectRatio.
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_MIRROR
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_SHADER_USAGE
D3D11_VIDEO_PROCESSOR_FEATURE_CAPS_METADATA_HDR10

Требования

Минимальный поддерживаемый клиент Windows 8 [только настольные приложения]
Минимальный поддерживаемый сервер Windows Server 2012 [только настольные приложения]
Заголовок d3d11.h

См. Также

D3D11_VIDEO_PROCESSOR_CAPS

Direct3D 11 Перечисление видео

.

Добавить комментарий

Ваш адрес email не будет опубликован.