Разное

Wifi channels: Wi-Fi Channels, Frequency Bands & Bandwidth » Electronics Notes

Содержание

Какой канал выбрать для Wi-Fi роутера: советы бывалого сисадмина

Привет! Это будет универсальный ликбез по каналам Wi-Fi, их выбору и установке. Разумеется с теорией, практикой и лучшими подходами опытных сисадминов. Устраиваемся поудобнее. С вами Ботан из WiFiGid, и это будет горячий обзор! Предлагаю начать.

Что-то не получилось? Все действия в молоко? Есть вопрос к автору? Напишите комментарий, и на него обязательно будет ответ.

О каналах

Тема с каналами с каждым годом становится все актуальнее. Если сначала я как-то пренебрежительно относился к ней, но сейчас и правда попадаются ситуации когда теория проявляется на практике – загруженные каналы создают помехи для всех пользователей, скорости падают, соединения сбрасываются. Как выход приходится искать новый канал.

Это будет универсальная инструкция для всех производителей роутеров – TP-Link, ASUS, D-LInk, ZyXEL и т.д. Но если вы захотите точно и по шагам настроить свой конкретный роутер – рекомендую поискать статью на нашем сайте через поиск вводом туда своей модели. Там будет уже точная пошаговая инструкция!

Для начала предлагаю видео по теме. И про каналы Wi-Fi, и про выбор, и про настройку:

Современные домашние маршрутизаторы работают на следующих частотах:

  1. 2.4 ГГц – самая первая Wi-Fi частота. Диапазон – 2,401-2,483 ГГц. Именно на ней работает большая часть устройств. А число каналов то ограниченно – их всего 13, да и то от страны к стране ограничены (так в США доступно всего 11, из-за чего могут возникнуть некоторые конфликты, а Windows видит только 12 и т.д.). Как итог – каналы нагружаются, помехи увеличиваются, возникают проблемы с сетью. Особенно на этой частоте. Стандарты до 802.11n.
  2. 5 ГГц – относительно новая частота. И каналов тоже больше – 23. И использующих его устройств тоже меньше. Даже лично у автора статьи в настоящий момент в помещении стоит роутер только на 2.4 ГГц. Стандарты 802.11ac и новее.

Вот перечень частот с разделением на каналы:

КаналЧастотаКаналЧастота
12.412345.170
22.417365.180
32.422385.190
42.427405.200
52.432425.210
62.437445.220
72.442465.230
82.447485.240
92.452525.260
102.457565.280
112.462605.300
122.467645.320
132.4721005.500
1045.520
1085.540
1125.560
1165.580
1205.600
1245.620
1285.640
1325.660
1365.680
1405.700
1475.735
1495.745
1515.755
1535.765
1555.775
1575.785
1595.795
1615.805
1635.815
1655.825

Как правило у обычного пользователя каналы выбираются роутером автоматически, и не всегда самым лучшим образом. А мы пойдем другим путем – просканируем всю сеть вокруг, найдем свободные каналы и поменяем на них. И все будет хорошо!

Я все же верю в оптимальный выбор каналов роутера в автоматическом режиме, и вам советую того же! Установку статичного канала делайте только при полной уверенности в необходимости!

Появилась проблема с роутером? Просто перезагрузите его! Не заработало? Сделайте это еще несколько раз, пока не заработает. После перезагрузки роутер сам поменяет канал на правильный.

Ищем свободный канал

Для начала нужно определить, какой канал Wi-Fi является самым незагруженным в настоящий момент, а значит какой нам выбрать. Именно он будет самым лучшим для нас в текущий момент времени. Как это сделать?

  1. Для компьютера – используем программу inSSIDer.
  2. Для Android – используем приложение Wi-Fi Analyzer или Home Wi-Fi Alert.

Что бы вы ни выбрали, окно каналов будет почти всегда одинаковым:

Посмотрели на глаз, и определили, что в этом случае самый свободный Wi-Fi канал – 5. Вот его и будем использовать. Универсальная быстрая методика, чтобы проверить свое окружение и определить наилучший канал. А вот то же самое для inSSIDer, можете сравнить:

Как видите, не так уж и сложно узнать. Единственное, что может отпугнуть – многие каналы пересекаются между собой в частотном диапазоне, создают дополнительные помехи. Так что нужно выбирать и правда наименее занятые. Но всегда найти можно!

Для теоретиков. Список непересекающихся между собой каналов:

[1,6,11], [2,7], [3,8], [4,9], [5,10]

Лучшие каналы для установки – 1, 6 или 11.

Будьте осторожны с установкой 12 и 13 каналов. Некоторые устройства могут их не видеть!

Меняем канал на роутере

Как только выбрали самый свободный, можно переходить в настройки роутера и изменить частоту канала на выбранную. Делается это несложно!

Внимание! Мы не можем перечислить все настройки для каждой модели роутеров в этой статье. Но через поиск на нашем сайте и название вашей модели вы получите конкретную инструкцию под свой роутер! Здесь будет лишь общая информация.

Алгоритм работы:

  1. Входим в настройки. Адрес входа, логин и пароль ищем на дне роутера или уточняем в конкретной статье на нашем сайте.
  2. В настройках заходим в параметры беспроводного режима Wi-Fi сети. Если ваш роутер двухдиапазонный – для каждого диапазон 2.4 ГГц и 5 ГГц будут отдельные настройки.
  3. В настройках ищем параметр канала – выбираем его (обычно по умолчанию стоит auto), не забываем сохранить настройки и перезагрузить.

Выбранный канал всегда можно будет заменить тем же способом. Не бойтесь экспериментировать!

Для входа в настройки обычно используют следующие данные:

Адрес: 192.168.0.1 или 192.168.1.1
Логин – admin
Пароль – admin или пустой

Ниже даю скриншоты правильной настройки каналов для разных моделей. Наверняка у вас будет что-то похожее.

Для справки – на русском наша настройка называется «канал», на английском «channel».

TP-Link – старый интерфейс

TP-Link – новый интерфейс

ASUS

ZyXEL Keenetic – старый интерфейс

ZyXEL Keenetic – новый интерфейс

D-Link

Mercusys

Netis

Tenda

Apple Airport

Обычно яблочники оставляют все лаконично… Настолько лаконично и просто, что сложные настройки или лежат глубоко, или вообще недоступно. Здесь что-то среднее. До каналов тоже можно докопаться:

Альтернативно этот роутер можно настроить и через мобильное приложение. Но это уже тема для отдельной статьи, в нашу универсальную так углубляться не хочу.

Не забывайте сохранять установленные настройки! А еще лучше дополнительно перезагружайте роутер!

Вот и все. Надеюсь, у тебя получилось сделать все, что было нужно! Но если вдруг где-то возникла проблема, обязательно напиши в комментарии. Выразить благодарность можно там же!

Выбираем канал для точки доступа Wi-Fi. Исчерпывающее руководство / Хабр

2,4 ГГц — это плохо. 5 ГГц — это хорошо. 6 ГГц — это ещё лучше, но послезавтра. Все это знают, кого я тут учу, в самом деле. Всё это хорошо, только делать-то что, когда ты такой, как умный, открываешь какой-нибудь Wi-Fi Explorer, а там сатанизм и этажерки, как на скриншоте?

Шаг первый — поплакать. Шаг второй — нырнуть под кат. Вопрос простой, а ответ — нет.


Для начала — разминочный тест. Ситуация номер раз: занят один канал в 2.4 ГГц, нужно поставить свою точку доступа. На какой канал?

  1. На любой, кроме того же самого;
  2. Плюс-минус пять каналов от занятого, то есть, шестой и дальше;
  3. Лучше, конечно, на шестой или одиннадцатый;
  4. На тот же самый канал.

Ситуация вторая: диапазон 2,4 ГГц занят двумя точками доступа: одна вещает на первом канале с шириной 40 МГц, вторая — на девятом в такой же ширине. Куда нам встать со своей точкой доступа?

  1. На любой канал, кроме первого или девятого, очевидно же;
  2. Желательно на тринадцатый, чтобы как можно дальше от этих двух;
  3. На первый, пятый, девятый или двенадцатый;
  4. На первый или девятый.

Ситуация под цифрой три, тут похитрее задачка: в эфире три точки доступа, по 20 МГц на первом, шестом и одиннадцатом канале (“во-первых, это красиво”). Куда поставить свою точку доступа?

  1. На любой канал, кроме первого, шестого и одиннадцатого;
  2. На первый, шестой или одиннадцатый — наверное, лучше на первый, потому что мощность пониже;
  3. На первый, шестой или одиннадцатый — может, есть ещё какая-то характеристика, на которую надо посмотреть?
  4. Третий-четвёртый или восьмой-девятый, что-то из этого, потому что там пустые места есть.

Ситуация 4: Этажерка Безнадёжности. Куда поставить точку доступа?

  1. На каналах с девятого и дальше мощность ниже всех остальных, так что надо ставить туда;
  2. Меньше всего точек доступа на 13 канале, так что на него;
  3. Всё настолько плохо, что уже без разницы. На любой наугад.

Про 5 ГГц я не говорю по той простой причине, что там всё примерно то же самое, но не совсем, а, как всегда в вайфае, всё зависит от всего. Основные принципы выбора там будут примерно те же самые, только кое-что будет полегче, а другое кое-что — посложнее. Но это, как говорил Каневский, уже совсем другая история.

Если вы быстро и без запинки ответили на этот стартовый тест, то поздравляю: либо вы узнаете много нового из этой статьи, либо не узнаете ничего. Правильные ответы —

Вот такие:

Ситуация 1 — любой из ответов лучше варианта 1, но вариант 3 приличнее и вежливее всего;

Ситуация 2 — вариант 4;

Ситуация 3 — варианты 2 или 3, причём вариант 3 лучше;

Ситуация 4 — вариант 3, он же “против всех”.

Для того, чтобы понять принцип, по которым более правильно так, а не по-другому, нам нужно обсудить на пальцах, как сети Wi-Fi дружат друг с другом — если бы это сосуществование было серьезной проблемой, Wi-Fi не торчал бы в каждой кофеварке. Как мы уже выяснили в предыдущей моей заметке, основная цель протокола 802.11 — не обеспечение максимально возможной пропускной способности на один мегагерц занятого эфира, а бескомпромиссная совместимость и работоспособность протокола даже в самых плохих условиях (типа заглавной картинки, да). Придуман протокол грамотно, реализован, кхм, по-разному, но в целом тоже не глупо, и всё-таки рано или поздно всякий запас прочности познаёт свой предел.

Итак, представим, что в мире остались всего два устройства, которые умеют работать с Wi-Fi, и это точка доступа и клиент. Первое правило вайфай — никому не расска “Пока говорит один — остальные молчат”. И не просто молчат, а внимательно слушают.

Собираясь передать данные, первое, что делает любое устройство Wi-Fi — внимательно слушает, не передаёт ли кто свои данные. Получится очень неловко, если мы начнём говорить одновременно с кем-то ещё, не так ли? В отличие от 802.3, он же Ethernet (слишком обобщённо, но пусть будет), в котором момент одновременного разговора определяют, когда он произошёл (помните лампочку Collision на старых хабах? Я тоже нет, но речь о ней), в 802.11 стараются такого момента избежать и не допустить. Главная причина в том, что разница между передаваемым и принимаемым сигналом в вайфае может достигать МИЛЛИАРДА раз (я не шучу!), и то, что передаёт передатчик, может наглухо забить и сжечь приёмник, если он попробует слушать одновременно с передачей. Весь этот этикет взаимного “После Вас — нет, после Вас!” среди устройств 802.11 называется сложной аббревиатурой CSMA/CA, которая делится на три части:

CS — Carrier Sense, определение несущей;
MA — Multiple Access, множественный доступ;
CA — Collision Avoidance, избежание коллизий.

У меня шевелится паучье чутьё на тему того, что вы всю эту лирику уже не раз читали, но потерпите чуть-чуть, сейчас мы доберёмся до мясца нашей задачи о расстановке козы, волка и капусты. В рамках этой заметки нас интересуют первые две буквы, а именно CS. Что это вообще такое?

Так вот, определение несущей — это, по сути, и есть механизм определения, говорит ли сейчас кто-то ещё или нет. Всё сводится к тому, что практически постоянно проверяется наличие двух возможных причин занятости эфира — Wi-Fi-устройства и все остальные устройства (да, вот так вот ксенофобовато, “наши и все остальные” — двадцать с лишним лет протоколу, а актуальности, как видите, не теряет!). Перед тем, как только подумать о передаче данных, устройству нужно провести оценку занятости эфира (натурально, так и называется — Clear Channel Assesment, или CCA). “Наши” и “не наши”, по мнению каждого устройства, не равны по значимости, и есть два пороговых значения — это SD (Signal Detect), которое означает, что мы услышали что-то на языке 802.11, и ED (Energy Detect), которое означает любую мощность на входе приёмника (любой другой язык).

А теперь внимание: к “нашим” вайфай-устройства в СТО раз более внимательны, чем к “всем остальным”. То есть, эфир считается занятым, если мы услышали какой-то 802.11-фрейм на уровне всего на 4 дБ лучше уровня шума — мы ооооочень вежливы к другим устройствам Wi-Fi! А все остальные (всякие там Bluetooth, к примеру) помешают что-то передать только тогда, когда уровень сигнала от них будет выше шума на 24 дБ!

Спасибо замечательному David Coleman за эту красивую картинку.

Много это или мало? Давайте приведём самые хрестоматийные числа в качестве примера. Итак, для того, чтобы устройства стандарта 802.11n развили максимальные скорости (при ширине канала в 20 МГц и одном приёмопередатчике это 72,2 Мб/с), им нужен сигнал уровнем примерно -64 дБм при соотношении “сигнал/шум” не меньше 25 дБ (если кому интересно, откуда я взял эти числа — то вот отсюда, пользуйтесь, если до сих пор не заглядывали в статью skhomm «Все полезные материалы по Wi-Fi в одном месте»). То есть, передачу данных остановит ЛЮБОЙ кадр на этом же канале с уровнем приёма выше -85 дБм! В каком-нибудь многоквартирном доме это добрые плюс-минус два этажа (я терпеть не могу оценивать мощность длиной, но в этом случае готов согрешить ради наглядности), а в чистом поле — полкилометра расстояния!

А вот если наше готовое к передаче устройство услышит какой-то сигнал, но не сможет его расшифровать, то оно будет его игнорировать вплоть до -65 дБм, то есть, до тех пор, пока уровень этой сторонней помехи почти не сравняется с уровнем сигнала от той самой идеальной точки доступа, на которую оно и хотело передать данные. Вот это да!

“Но позвольте” — совершенно правильно возразит кто-нибудь моими же собственными пальцами, — “мы же все знаем, что блютус мешает вайфаю, как ему мешают микроволновки, камеры там всякие!”. Совершенно верно. При уровне “нечитаемой” помехи в, скажем, -70 дБм (ну, то есть, она ещё не считается достаточно сильной для того, чтобы остановить всю передачу и заставить считать среду занятой) она становится тем самым шумом, от которого мы соотношение “сигнал/шум” и отсчитываем. Мы слышим нашу точку доступа на уровне -65 дБм, мы слышим любой нечитаемый сигнал на уровне -70 дБм, таким образом, наше соотношение “сигнал-шум” вдруг упало до 5 дБ, а при таких параметрах канальную скорость в 72,2 Мб/с уже не развить, а максимум, что можно развить — это несчастные 27 Мб/с. Все в радиусе действия этой помехи резко уронили свои канальные скорости, в итоге за секунду трафика через точку доступа можно прокачать существенно меньше — вот и начались “тормоза в вайфае”, ай-ай-ай, всё плохо, колёсико крутится, ютьюб не грузится. Так-то!

“Какое же отношение” — последует новый логичный вопрос от внимательного идеализированного мной читателя, — “какой-то там блютус имеет к нашему вопросу? Ведь на картинках в тесте нет никакого блютуса, там только вайфай!”. А вот какое: любое 802.11-устройство может декодировать фрейм только тогда, когда он передан ПОЛНОСТЬЮ на канале, который она слушает! Посмотрите на эти две сети:

Точка доступа, работающая на первом канале, в упор не понимает, что говорит вторая точка доступа, потому что слышит только 75% того, что она передаёт (как и точка на втором канале, которая слышит только 75% того, что говорит первая). Именно поэтому она не понимает, что это “наши” — она не считает, что должна уступить среду для передачи! Отсюда соотношение “сигнал/шум” катится вниз, канальная скорость (а с ней и итоговая пропускная способность) катятся вниз, и, заметьте, совсем даже не пропорционально перекрытию каналов, а обратно пропорционально разнице в мощности — чем лучше клиент, который хочет передать данные первой точке, слышит вторую, тем сильнее упадёт его канальная скорость.

Но и это, к сожалению, ещё не все причины разрушительного действия перекрывающихся каналов. Теперь мы обратимся к следующим двум буквам, а именно MA, или Multiple Access. Мы не будем углубляться в детали доступа к среде в протоколах 802.11 — я отмечу только одну особенность, которая важна в контексте обсуждаемого вопроса. Итак, после каждого фрейма, неважно, служебный он или содержит данные, любое Wi-Fi устройство должно выждать некоторое время, прежде чем снова пытаться получить доступ к среде. Более того, неважно, само ли оно отправило этот фрейм или только услышало его — придётся подождать определённое время, называемое InterFrame Space (IFS), и только потом затевать игру “Кто первый застолбит среду”. Этих самых IFS существует несколько, и вот что интересно: если наше устройство после передачи фрейма не услышало подтверждения, что адресат его получил, то оно будет ждать дольше, чем если бы получило. В разы дольше.

Вернёмся к картинке из позапрошлого абзаца. Точка доступа с первого канала принимает фрейм. В это время точка доступа со второго канала тоже принимает фрейм. Оба этих фрейма повреждаются, и обе сети вынуждены простаивать бОльшее время, ещё сильнее теряя в пропускной способности (потому что, как мы помним, время = деньги, а для вайфая время = пропускная способность). Полная засада.

Итак, из всего этого следует простое правило: если не можете избежать пересечения каналов — ставьте точки доступа на один канал! Да, обе сети потеряют в пропускной способности, но, во всяком случае, они рассчитаны на такую работу.

Я напомню ситуацию 4.

Скрытый текст

В эфире не осталось ни одного канала, на котором не работает две и больше пересекающихся и мешающих друг другу сети, все мешают друг другу, все испытывают проблемы, поэтому ни мощность, ни выбор канала, ни волшебные алгоритмы, ни BSS Coloring, ни крёстная фея в такой ситуации уже не помогут. Можно ставить свою точку доступа куда угодно.

Понятное дело, что в таком беспроводном адке уже ничего не исправить, но что нужно делать, чтобы не оказаться в такой ситуации? В первую очередь, запомнить раз и навсегда, что есть всего три не мешающих друг другу канала в диапазоне 2,4 ГГц — первый, шестой и одиннадцатый. Конечно, можно заметить, что третий, восьмой и тринадцатый тоже друг другу не мешают, но, во-первых, тринадцатый можно не везде (в США всего 11 каналов), а во-вторых, если вы отклонитесь от мантры “1-6-11”, а кто-то другой не отклонится, то весь эффект сойдёт на нет — все каналы снова пересекутся и испортят друг другу жизнь. Это как обжимать витую пару — в принципе, если с двух сторон последовательность одинаковая, то может и заработать, только вот разбираться кому-то потом в распиновке каждой розетки будет ох как несладко. Ещё раз: первый. Шестой. Одиннадцатый.

Хорошо, вот ситуация под номером 3.

Скрытый текст

Ну хорошо, вот они, первый, шестой или одиннадцатый. Какой из них выбрать? Да, в принципе, любой из этих трёх подходит, но если выбирать до конца оптимально — то нам гораздо важнее, как часто передаются данные на каждом из этих каналов; то есть, идеальный ответ — смотреть на ещё один параметр, а именно утилизацию эфира. Это просто: если к точке доступа на первом канале подключено 100 клиентов, а к точкам на 6 и 11 — ни одного, то гораздо выгоднее встать на 6 или 11. В англоязычной терминологии есть два слова — airtime и utilization, и они означают, строго говоря, не одно и то же, но можно ориентироваться как на одно, так и на другое, показометры эти взаимозависимые.

Теперь — ситуация 2.

Скрытый текст

Мы уже поняли, что пересекать каналы нельзя, поэтому варианты с 13 и любым каналом отпадают. Почему же нельзя поставить точку доступа на пятый канал?

Причина — в истории. Нет, серьёзно. Каналы шире 20 МГц появились только в стандарте 802.11n, когда впервые предложили слепить воедино два соседних канала и говорить по ним в два раза — эээээээ… толще? В два раза продуктивнее! Но с точки зрения совместимости вся служебная информация, то есть, все фреймы, которые должны быть понятными для остальных сетей, идёт только в основных 20 МГц занятой полосы. Я напомню вот эту классную картинку с анатомией передачи данных по Wi-Fi, она всегда к месту:

Обратите внимание: только синяя часть на диаграмме использует все 40 МГц эфира! Все “шестерёнки” протокола крутятся в основных двадцати мегагерцах! Это, кстати, верно и для 80 МГц, доступных в 802.11ac: всё служебное летит в первой двадцатке, а оставшиеся 60 простаивают бОльшую часть времени. Ладно, почти всё, рано или поздно к вопросу широких каналов мы вернёмся — оооо, я обещаю, мы их ещё обсудим!

И в итоге получается, что пятый канал, хоть и попадает целиком внутрь одной сети, всё равно видеть её не будет — со всеми описанными вытекающими (кхм, какая двусмысленная фраза). Для нормальной работы нам остаются лишь первый и девятый каналы. Как определить номер основного канала? Очень просто — он будет написан в свойствах сети, когда вы посмотрите на неё с помощью любого приложения-сканера сетей:

Номер primary-канала и есть тот номер, который важен для нас.

Ну, и первая ситуация теперь вообще не вызывает вопросов, правда?

Скрытый текст

Тезисно сформулируем всё, что мы смогли обсудить в таком сложном ответе на такой простой вопрос:

  • Можно работать на одном канале, но никогда не нужно каналы пересекать;
  • Нам нужны первые 20 МГц канала, остальное по-прежнему нельзя пересекать;
  • (стройный хор): Первый! Шестой! Одиннадцатый!

Пользуясь случаем, передаю привет МГТС, которые в своё время прославились тем, что ставили все домашние роутеры абонентам на шестой канал. Пожалуй, это не самое тупиковое решение, как могло бы показаться на первый взгляд.

Wi-Fi, Частотные каналы

Частотные полосы и каналы Wi-Fi

Мировая практика использования нелицензируемого частотного спектра:

ISM– Industrial, Scientific, Medical
1. Industrial/Промышленный:       902 – 928 MHz (ширина 26 MHz),
2. Scientific/Научный:                  2400 – 2500 MHz (ширина 100 MHz),
3. Medical/Медицинский:             5725 – 5875 MHz (ширина 150 MHz).

Здесь для сетей стандарта Wi-Fi используется в основном часть диапазона 2400 — 2500 MHz.

UNII – Unlicensed National Information Infrastructure
набор полос в диапазоне частот 5150 – 5825 MHz (частично используется для устройств WiFi).

Выбор корректных частотных каналов является одной из ключевых задач для проектирования сети стандарта WiFi 802.11. При этом процесс выбора должен учитывать фундаментальный выбор частотной архитектуры подходящего WiFi-решения: многоканальная или одноканальная архитектура?. Эта информация также крайне важна при проведении радиообследования (site survey) зоны покрытия будущей сети Wi-Fi.

 


Частотные полосы и каналы WiFi в 2.4
GHz

Канал WiFi    Нижняя частота    Центральная частота    Верхняя частота

1                   2.401                          2.412                           2.423
2                   2.406                          2.417                           2.428
3                   2.411                          2.422                           2.433
4                   2.416                          2.427                           2.438
5                   2.421                          2.432                           2.443
6                   2.426                          2.437                           2.448
7                   2.431                          2.442                           2.453
8                   2.436                          2.447                           2.458
9                   2.441                          2.452                           2.463
10                 2.446                          2.457                           2.468
11                 2.451                          2.462                           2.473
12                 2.456                          2.467                           2.478
13                 2.461                          2.472                           2.483

Общая диаграмма перекрытия частотных каналов WiFi в 2.4GHz

В полосе частот WiFi 2.4GHz доступны 3 неперекрывающихся канала: 1, 6, 11.
Данное выделение строится на требовании IEEE по обеспечению минимума в 25MHz для разнесения центров неперекрывающихся частотных каналов WiFi. При этом ширина канала составляет 22MHz.

 


Частотные полосы и каналы WiFi в 5
GHz

Базовая мировая практика, которая может существенно изменяться по странам.

UNII-1:                    5150 – 5250 MHz (доступно 4 частотных канала WiFi)
UNII-2:                    5250 – 5350 MHz (доступно 4 частотных канала WiFi)
UNII-2 Extended:     5470 – 5725 MHz (доступно 11 частотных каналов WiFi)
UNII-3:                    5725 – 5825 MHz (доступно 4 частотных канала WiFi)

Сетка рабочих каналов WiFi и частоты в 5GHz:

Для вычисления центральной частоты канала WiFi можно использовать следующую формулу:
5000+(5*N)  / MHz
/где N это номер канала WiFi, например 36, 40 и т.д./

Формирование каналов WiFi в 5 GHz:

При этом дистанция от граничных диапазонов составляет 30 MHz, а межканальное разнесение составляет 20MHz.

Использование данных частотных каналов в РФ можно посмотреть на нашем сайте здесь.

Больше о технологиях на базе группы стандартов WiFi 802.11 в нашей мини-академии WiFi.

О новом стандарте 802.11ac.

WiFi Калькуляторы.

Нужна помощь в разработке Технического Задания на сеть стандарта WiFi?

Нужны примеры как оценить затраты на сеть WiFi?

 

Для получения анонсов при выходе новых тематических статей или появлении новых материалов на сайте предлагаем подписаться.

Присоединяйтесь к нашей группе на Facebook: www.facebook.com/Wi.Life.ru
Мы публикуем интересные новости о Wi-Fi со всего света, информацию о выходе новых статей и расширении контента основных модулей ресурса Wi-Life.ru

Wi-Life.Team

Использование материалов этого сайта разрешено только с согласия Wi-Life.ru и наличии прямой ссылки на источник.

 

Please enable JavaScript to view the comments powered by Disqus.
blog comments powered by

Как правильно настроить Wi-Fi / Хабр

Введение

Думаю, не ошибусь сильно, если у большинства из нас подключение к интернету выглядит следующим образом: есть некоторый довольно скоростной проводной канал до квартиры (сейчас уже и гигабит не редкость), а в квартире его встречает роутер, который раздаёт этот интернет клиентам, выдавая им «чёрный» ip и осуществляя трансляцию адресов.

Довольно часто наблюдается странная ситуация: при скоростном проводе, с роутера раздаётся совсем узенький wifi-канал, не загружающий и половины провода. При этом, хотя формально Wi-Fi, особенно в его ac-версии поддерживает какие-то огромные скорости, при проверке оказывается, что либо Wi-Fi подключается на меньшей скорости, либо подключается, но не выдаёт скорости на практике, либо теряет пакеты, либо всё вместе.

В какой-то момент и я столкнулся с похожей проблемой, и решил настроить свой Wi-Fi по-человечески. На удивление, это заняло примерно в 40 раз дольше, чем я ожидал. Вдобавок, как-то так случилось, что все инструкции по настройке Wi-Fi, которые я находил, сходились к одному из двух видов: в первом предлагали поставить роутер повыше и выпрямить антенну, для чтения второго же мне не хватало честного понимания алгоритмов пространственного мультиплексирования.

Собственно, эта заметка — это попытка заполнить пробел в инструкциях. Я сразу скажу, что задача до конца не решена, несмотря на приличный прогресс, стабильность подключения всё ещё могла бы быть лучше, поэтому я был бы рад услышать комментарии коллег по описанной тематике.

Глава 1:

Итак, постановка задачи

Wifi-роутер, предложенный провайдером, перестал справлять со своими обязанностями: наблюдаются длительные (30 секунд и больше) периоды, когда пинг до точки доступа не проходит, наблюдаются очень длительные (порядка часа) периоды, когда пинг до точки доступа достигает 3500 мс, бывают длительные периоды, когда скорость соединения с точкой доступа не превышает 200 кбит/сек.

Сканирование диапазона с помощью windows-утилиты inSSIDer выдаёт картинку, представленную в начале статьи. В округе наблюдается 44 Wifi SSID в диапазоне 2.4 ГГц и одна сеть в диапазоне 5.2 ГГц.

Инструменты решения

Самосборный компьютер Celeron 430, 2b Ram, SSD, безвентиляторный, две беспроводные сетевые карты на чипе Ralink rt2800pci, Slackware Linux 14.2, Hostapd из Git на сентябрь 2016 года.

Сборка роутера выходит за рамки данной заметки, хотя отмечу, что Celeron 430 хорошо показал себя в безвентиляторном режиме. Отмечу, что текущая конфигурация является последней, но не окончательной. Возможно, улучшения ещё осуществимы.

Решение

На самом деле, решение должно было бы, по хорошему, заключаться в запуске hostapd с минимальным изменениями настроек. Однако, опыт настолько хорошо подтвердил истинность поговорки «гладко было на бумаге, да забыли про овраги», что потребовалось написание этой статьи для систематизации знаний обо всех неочевидных подробностях. Также мне изначально хотелось бы избежать низкоуровневых подробностей для стройности изложения, но выяснилось, что это невозможно.

Глава 2

Немного теории

Частоты

Wi-Fi — это стандарт беспроводных сетей. С точки зрения OSI L2, точка доступа реализует концентратор типа switch, однако чаще всего она также совмещена с коммутатором уровня OSI L3 типа «роутер», что ведёт к изрядной путанице.

Нас же больше всего будет интересовать уровень OSI L1, то есть, собственно, та среда, в которой ходят пакеты.

Wi-Fi — это радиосистема. Как известно, радиосистема состоит из приёмника и передатчика. В Wi-Fi точка доступа и клиентское устройство осуществляют обе роли по очереди.

Wi-Fi-передатчик работает на некоторой частоте. Частоты эти занумерованы, и каждому номеру соответствует некоторая частота. Важно: несмотря на то, что для любого целого числа существует теоретическое соответствие этому числу некоторой частоты, Wi-Fi может работать только в ограниченных диапазонах частот (их три, 2.4 ГГц, 5.2 ГГц, 5.7 ГГц), и только на некоторых из номеров.

Полный список соответствий можно посмотреть в Wikipedia, нам же важно, что при настройке точки доступа, необходимо указать, на каком именно канале будет находиться несущая частота нашего сигнала.

Неочевидная деталь: не все Wi-Fi стандарты поддерживают все частоты.

Wi-Fi-стандартов есть два: a и b. «a» старше и работает в диапазоне 5ГГц, «b» новее и работает в диапазоне 2.4 ГГц. При этом b медленнее (11 mbit вместо 54 mbit, то есть, 1.2 мегабайта в секунду вместо 7 мегабайт в секунду), а диапазон 2.4 ГГц уже и вмещает меньше станций. Почему так — загадка. Вдвойне загадка, почему точек доступа стандарта а практически нет в природе.


(Картинка позаимствована из Википедии.)

(На самом деле, я немного лукавлю, потому что a поддерживает ещё частотный диапазон 3.7 ГГц. Однако, ни одного устройства, знающего что-нибудь про этот диапазон, мне не доводилось увидеть.)

Подождите, спросите вы, но есть же ещё 802.11g, n, ac — стандарты, и они-то, кажется, как раз должны побивать по скорости несчастные a и b.

Но нет, отвечу я вам. Стандарт g — это запоздалая попытка довести скорость b до скорости a, в диапазоне 2.4 ГГц. Но зачем, вы ответите мне, ты вообще вспоминал про b? Ответ, потому что несмотря на то, что диапазоны обоих b и g называются 2.4, на самом деле они чуть-чуть отличаются, и диапазон b на один канал длиннее.

Стандарты же n и ac вообще не имеют отношения к диапазонам — они регламентируют скорость, и только. Точка стандарта n может быть как «в базе» a (и работать на 5 Ггц), так и «в базе» b и работать на 2.4 ГГц. Про точку стандарта ac я не знаю, потому что не видел.

То есть, когда вы покупаете точку доступа n, нужно очень внимательно посмотреть, в каких диапазонах это n работает.

Важно, что в один момент времени один Wi-Fi чип может работать только в одном диапазоне. Если же ваша точка доступа утверждает, что может работать в двух одновременно, как например, делают бесплатные роутеры от популярных провайдерах Virgin или British Telecom, значит в ней на самом деле два чипа.

Ширина канала

На самом деле, я должен извиниться, потому что ранее сказал, что некий диапазон длиннее другого, не объяснив, что такое «длиннее». Вообще говоря, для передачи сигнала важна не только несущая частота, но и ширина кодированного потока. Ширина — это в какие частоты выше и ниже несущей может залезать имеющийся сигнал. Обычно (и к счастью, в Wi-Fi), каналы симметричные, с центром в несущей.

Так вот в Wi-Fi могут быть каналы шириной 10, 20, 22, 40, 80 и 160 МГц. При этом точек доступа с шириной канала в 10 МГц я никогда не видел.

Так вот, одним из самых удивительных свойств Wi-Fi является то, что несмотря на то, что каналы пронумерованы, они пересекаются. Причём не только с соседями а аж с каналами через 3 от себя. Иными словами, в диапазоне 2.4 ГГц только точки доступа, работающие на каналах 1, 6 и 11 — не пересекаются потоками шириной в 20 МГц. Иными словами, только три точки доступа могут работать рядом так, чтобы не мешать друг другу.

Что же такое точка доступа с каналом шириной 40 МГц? Ответ — а это точка доступа, которая занимает два канала (непересекающихся).

Вопрос: а сколько каналов шириной 80 и 160 МГц вмещается в диапазон 2.4 ГГц?

Ответ:Ни одного.

Вопрос, а на что влияет ширина канала? Точного ответа на этот вопрос я не знаю, проверить не смог.

Я знаю, что если сеть пересекается с другими сетями, стабильность соединения будет хуже. Ширина канала 40 МГц даёт больше пересечений и хуже соединение. Согласно стандарту, если вокруг точки есть работающие другие точки доступа, режим 40 МГц не должен включаться.

Верно ли, что вдвое большая ширина канала вдвое даёт большую пропускную способность?

Вроде бы, да, но проверить невозможно.

Вопрос: Если на моей точке доступа три антенны, верно ли, что она может создавать три пространственных потока и утроить скорость соединения?

Ответ: неизвестно. Может так оказаться, что из трёх антенн, две могут заниматься только отправкой, но не приёмом пакетов. И скорость сигнала будет несимметричная.

Вопрос: Так сколько же мегабит даёт одна антенна?

Ответ: Можно посмотреть вот здесь en.wikipedia.org/wiki/IEEE_802.11n-2009#Data_rates

Список странный и нелинейный.

Очевидно, самый важный параметр — это MCS-индекс, который именно и определяет скорость.

Вопрос: Откуда берутся такие странные скорости?

Ответ: Есть такая вещь как HT Capabilities. Это опциональные фишечки, которые могут чуть-чуть править сигнал. Фишечки бывают как очень полезные: SHORT-GI добавляет чуть-чуть скорости, около 20 мбит, LDPC, RX STBC, TX STBC добавляют стабильности (то есть должны уменьшать пинг и потерю пакетов). Впрочем, ваше железо может запросто их не поддерживать и при этом быть вполне «честным» 802.11n.

Мощность сигнала

Самый простой способ бороться с плохой связью — это вжарить больше мощности в передатчик. В Wi-Fi бывает мощность передачи до 30 dBm.

Глава 3

Решение задачи

Из всего вышеперечисленного винегрета, казалось бы, можно сделать следующий вывод: у вайфая можно реализовать два «режима» функционирования. «Улучшающий скорость» и «улучшающий качество».

Первый, казалось бы, должен говорить: бери самый незанятый канал, ширину канала 40 МГц, антенн побольше (желательно, 4), и добавляй побольше Capabilities.

Второй — убирай всё, кроме базового n-режима, включай мощность побольше, и включай те Capabilities, которые добавляют стабильности.

Вспоминая ещё раз пословицу про овраги, опишем, какие именно неровности местности ждут нас при попытке реализации планов 1 и 2.

Овраг нулевой

Хотя чипсеты семейства Ralink rt2x00 являются самыми популярными чипсетами с поддержкой стандарта n и встречаются как в картах высокого ценового диапазона (Cisco), так и диапазона бюджетного (TRENDNET), и более того, выглядят в lspci совершенно однаково, они могут обладать кардинально разным функционалом, в частности, поддерживать только диапазон 2.4, только диапазон 5ГГц, или поддерживать непонятно чем ограниченные части обеих диапазонов. В чём отличия — загадка. Также загадка, почему карта с тремя антеннами поддерживает только Rx STBC в два потока. И почему они обе не поддерживают LDPC.

Первый овраг

В диапазоне 2.4 есть только три непересекающихся канала. На эту тему мы уже говорил и я не буду повторяться.

Второй овраг

Не все каналы позволяют увеличивать ширину канала до 40 МГц, более того, на какую ширину канала согласится карта, зависит от чипсета карты, производителя карты, загрузки процессора и погоды на Марсе.

Третий, и самый большой овраг

Regulatory domain

Если вам не хватало для счастья того, что сами стандарты Wi-Fi представляют из себя знатный винегрет, то возрадуйтесь тому, что каждая страна мира стремится всякими разными способами Wi-Fi ущемить и ограничить. У нас в Великобритании всё ещё не так плохо, в отличие, скажем, от тех же США, где Wi-Fi спектр зарегулирован до невозможности.

Так вот, регуляторный домен может требовать ограничений на мощность передатчика, на возможность запустить на канале точку доступа, на допустимые технологии модуляции на канале, а также требовать некоторых технологий «умиротворения спектра», таких как DFS (динамический выбор частоты), детекция радара (которая ещё у каждого регдомена своя, скажем, в Америках почти всюду предлагаемая FCC, в Европе другая, ETSI), или auto-bw (я не знаю, что это такое). При этом со многими из них точка доступа не заводится.

Многие регуляторные домены просто запрещают некоторые частоты в принципе.

Задать регуляторный домен можно командой:

iw reg set NAME

Регуляторный домен можно не задавать, но тогда система будет руководствоваться объединением всех ограничений, то есть самым худшим вариантом из возможных.

По счастью, во-первых данные по регуляторным доменам есть в открытом доступе на сайте ядра:

git.kernel.org/cgit/linux/kernel/git/sforshee/wireless-regdb.git/tree/db.txt

И по ним можно искать. В принципе, вероятно, можно пропатчить ядро так, чтобы оно игнорировало регуляторный домен, но это надо пересобирать ядро или как минимум регуляторный демон crda.

По счастью, команда iw phy info выводит все возможности нашего устройства, с учётом (!) регуляторного домена.

Итак, как же нам поправить состояние нашего Wi-Fi?

Для начала найдём страну, в которой не запрещён 13 канал. Путь хотя бы половина частоты будет пустой. Ну, таких стран довольно много, хотя некоторые, не запрещая его в принципе, однако запрещают на нём или режим высокой скорости n, или вообще создание точки доступа.

Но одного 13 канала нам мало — ведь мы хотим соотношение сигнал-шум побольше, а значит хотим запускать точку с силой сигнала 30. Ищем-ищем в CRDA, (2402 - 2482 @ 40), (30) 13 канал, ширина 40 МГц, сила сигнала 30. Есть такая страна, Новая Зеландия.

Но что это, на частоте 5 ГГц требуется DFS. Вообще, это теоретически, поддерживаемая конфигурация, но почему-то не работает.

Факультативная задачка, выполнимая людьми с повышенными социальными навыками:

Собрать подписи/движение в поддержку ускоренного перелицензирования Wi-Fi-диапазонов в ITU (ну, или хотя бы в вашей стране) в целом в сторону расширения. Это вполне реально, какие-нибудь депутаты (и кандидаты в депутаты), жаждущие политических очков, будут рады вам помочь.

Это овраг номер 4

Точка доступа может не заводиться при наличии DFS, без объяснения причин. Итак, какой же регуляторный домен нам выбрать?

Есть такая! Самая свободная страна в мире, Венесуэла. Её регуляторный домен — VE.

Полные 13 каналов диапазона 2.4, с мощностью 30 dBm, и сравнительно расслабленный 5ГГц диапазон.

Задача со звёздочкой. Если у вас в квартире совсем катастрофа, даже хуже, чем у меня, для вас есть отдельный, бонусный уровень.

Регуляторный домен «JP», Япония, позволяет делать уникальную вещь: запускать точку доступа на мифическом, 14 канале. Правда, только в режиме b. (Помните, я говорил, что между b и g всё-таки есть маленькие отличия?) Поэтому если у вас всё уж совсем плохо, то 14 канал может быть спасением. Но опять же, его физически поддерживает немного что клиентских устройств, что точек доступа. Да и максимальная скорость в 11 Мбит несколько обескураживает.

Копируем /etc/hostapd/hostapd.conf в два файла, hostapd.conf.trendnet24 и hostapd.conf.cisco57

Правим тривиальным образом /etc/rc.d/rc.hostapd, чтобы запускал две копии hostapd.

В первом указываем канал 13. Правда, ширину сигнала указываем 20 МГц (capability 40-INTOLERANT), потому что во-первых, так мы будем теоретически стабильнее, а во-вторых, «законопослушные» точки доступа просто не будут запускаться на 40 МГц из-за того, что забитый диапазон. Ставим capability TX-STBC, RX-STBC12. Плачем, что capabilities LDPC, RX-STBC123 не поддерживаются, а SHORT-GI-40 и SHORT-GI-20 хотя и поддерживаются и чуть-чуть улучшают скорость, но и чуть-чуть понижают стабильность, а значит, их убираем.

Правда, для любителей можно пропатчить hostapd, чтобы появилась опция force_ht40, но в моём случае это бессмысленно.

Если вы находитесь в странной ситуации, когда точки доступа то включаются то выключаются, то для особых гурманов можно пересобрать hostapd с опцией ACS_SURVEY, и тогда точка будет сама сначала сканировать диапазон и выбирать наименее «шумящий» канал. Более того, в теории она даже должна мочь переходить по собственному желанию с одного канала на другой. Мне, правда, эта опция не помогла, увы :-(.

Итак, наши две точки в одном корпусе готовы, запускаем сервис:

/etc/rc.d/rc.hostapd start

Точки успешно стартуют, но…

Но та, что работает на диапазоне 5.7 — не видна с планшета. Что за чертовщина?

Овраг номер 5

Проклятый регуляторный домен работает не только на точке доступа, но и на приёмном устройстве.

В частности, мой Microsoft Surface Pro 3, хотя и сделан для европейского рынка, в принципе не поддерживает диапазон 5.7. Пришлось переключиться в 5.2, но тут хоть завёлся режим 40 Мгц.

Овраг номер 6

Всё завелось. Точки стартовали, 2.4 показывает скорость 130 Мбит (был бы SHORT-GI, было бы 144.4). Почему карта с тремя антеннами поддерживает только 2 пространственных потока — загадка.

Овраг номер 7

Завести-то завелось, а иногда скачет пинг до 200, и всё тут.

А секрет вовсе не в точке доступа прячется. Дело в том, что по правилам Microsoft, драйвера Wi-Fi карты сами должны содержать ПО для поиска сетей и подключения к ним. Всё как в старые-добрые времена, когда 56к-модем должен был иметь при себе звонилку (которую мы все меняли на Shiva, потому что звонилка, идущая в штатной поставке Internet Explorer 3.0 была слишком уж ужасна) или ADSL-модем должен был иметь клиент PPPoE.

Но и о тех, у кого штатной утилиты нет (то есть, о всех на свете!), Microsoft позаботилась, сделав так называемую «автоконфигурацию Wi-Fi». Эта автоконфигурация жизнерадостно плюёт на то, что к сети мы уже подключены, и каждые Х секунд сканирует диапазон. В Windows 10 даже нет кнопки «обновить сети». Работает отлично, пока сетей вокруг две-три. А когда их 44, система замирает и выдаёт несколько секунд пинга 400.

«Автоконфигурацию» можно отключить командой:

netsh wlan set autoconfig enabled=no interface="???????????? ????"
pause

Лично я даже сделал себе на десктопе два батника «включить autoscan» и «выключить autoscan».

Да, прошу обратить внимание, что если у вас русский Windows, то скорее всего сетевой интерфейс будет иметь название на русском языке в кодировке IBM CP866.

Саммари

Я накатал довольно длинную простыню текста, и должен был бы завершить её кратким резюме самых важных вещей:

1. Точка доступа может работать только в одном диапазоне: 2.4 или 5.2 или 5.7. Выбирайте внимательно.
2. Лучший регуляторный домен — это VE.
3. Команды iw phy info, iw reg get покажут вам, что вы можете.
4. 13 канал обычно пустует.
5. ACS_SURVEY, ширина канала 20 МГц, TX-STBC, RX-STBC123 улучшат качество сигнала.
6. 40 МГц, больше антенн, SHORT-GI увеличат скорость.
7. hostapd -dddtK позволяет запустить hostapd в режиме отладки.
8. Для любителей можно пересобрать ядро и CRDA, увеличив мощность сигнала и сняв ограничения регуляторного домена.
9. Автопоиск Wi-Fi в Windows отключается командой netsh wlan set autoconfig enabled=no interface=»???????????? ????»
10. Microsoft Surface Pro 3 не поддерживает диапазон 5.7 ГГц.

Послесловие

Я большинство материалов, использованных при написании данного руководства, найдены либо в гугле, либо в манах к iw, hostapd, hostapd_cli.

На самом деле, проблема ТАК И НЕ РЕШИЛАСЬ. Временами пинг всё равно скачет до 400 и стоит на таком уровне, даже для «пустого» диапазона в 5.2 ГГц. Посему:

Ищу в Москве спектроанализатор Wi-Fi диапазона, укомплектованный оператором, с которым можно было бы проверить, в чём вообще проблема, и не заключается ли она в том, что неподалёку находится очень важное и секретное военное учреждение, о котором никто не знает.

Постскриптум

Wi-Fi работает на частотах от 2 ГГц до 60 ГГц (менее распространённые форматы). Это даёт нам длину волны от 150мм до 5мм. (Почему вообще мы меряем радио в частотах, а не в длинах волн? Так же удобнее!) У меня, в целом, возникает мысль, купить обои из металлической сетки в четверть длины волны (1 мм хватит) и сделать клетку Фарадея, чтобы гарантированно изолироваться от соседского Wi-Fi, да и заодно от всего другого радиооборудования, вроде DECT-телефонов, микроволновок и дорожных радаров (24 ГГц). Одна беда — будет блокировать и GSM/UMTS/LTE-телефоны, но можно выделить для них стационарную точку зарядки у окна.

Буду рад ответить на ваши вопросы в комментариях.

20 или 40 МГц, тайна выбора и советы

Привет! Сегодня будет годная статья про ширину канала. Что такое ширина канала, какую лучше выбрать – 20 МГц или 40 МГц, и как все-таки правильно? Эти и многие другие вопросы в авторской статье Ботана на WiFiGid.ru.

Если у тебя остались какие-то вопросы или есть интересные идеи, пожалуйста, напиши их в комментарии. Их обработают, ответят, а статью обновят, чтобы у следующих читателей точно все классно получилось с первого раза!

Что нужно установить?

Сначала хотелось бы разобраться с практическим вопросом, а вся теория уже будет ниже, дабы не напрягать читателей, ищущих лучший вариант пеленками текста. Итак, вот основные значения на роутерах 2,4 ГГц:

  1. 20/40 Мгц (Авто) – рекомендуется установить, если нет никаких проблем.
  2. 20 МГц – рекомендуется попробовать при подозрении на общие помехи от соседей и плохую работу Wi-Fi.
  3. 40 МГц – особый случай, если роутер не слушается. Лучше попробовать с Авто.

На новых 5 ГГц роутерах появился еще один режим: 20/40/80 МГц. Использование аналогично.

Чистые режимы вроде 40 МГц не рекомендованы стандартами IEEE 802.11n, т.к. могут вызвать несовместимость старых устройств. Именно поэтому на роутерах иногда присутствуют всего 2 режима – 20 MHz и Авто.

Что такое ширина?

Если очень коротко, ширина канала – это пропускная способность канала.

Но круче самого слова «ширина» здесь и не подберешь. Немного теории. Весь частотный диапазон около частот 2,4 ГГц и 5 ГГц, используемых в Wi-Fi, делится на каналы – небольшие полосы частот, чтобы можно было в рамках одной частоты уместить очень много устройств без сильного влияния друг на друга. В том же 2,4 ГГц их выделено стандартом 13 штук:

Видите эти дуги шириной в 22 МГц? Это и есть ширина канала. При этом обратите внимание, как пересекаются каналы между собой. Так и в жизни, Wi-Fi соседей в нашем доме как-то влияет и на нашу сеть, а в самом худшем случае могут возникнуть такие помехи, что скорость сети провалится просто в дно. Поэтому тема с выбором каналов и переездом в 5 ГГц (где общая ширина и количество каналов больше) становится все актуальнее в последнее время.

Но оказывается, что можно установить ширину в 40 МГц. Т.е. разница будет в том – что канал захватит больше места. Что от этого изменится? Изменится его полоса пропускания. На пальцах – есть проселочная грунтовая дорога. Едет по ней трактор, а все остальные будьте добры провалиться в кювет, т.к. места нет. А есть МКАД – полос больше, в общем машин пропускает больше, но тоже иногда стоит. А теперь представьте, что на МКАДе все снести и проложить там грунтовку…

Какую ширину канала выбрать?

Вот так и с шириной канала – чем он шире, тем больше через него пройдет. Чем уже – тем меньше. Для увеличения скорости лучше поставить 40 МГц.

Но не все так радужно. Взгляните еще раз на рисунок с каналами выше. Если посмотрите, там выделены 3 канала – 1й, 6й и 11й. Смысл их выделения – они не пересекаются. Т.е. при выборе ширины канала в 20 МГц мы получаем 3 непересекающихся каналов. Конечно, использовать можно и пересекающиеся, но здесь больше смысл в свободе общего диапазона от помех – в диапазоне можно разнести 3 устройства, и они абсолютно никак не будут влиять друг на друга.

Другое дело с 40 МГц – такой канал можно разместить лишь один. Все остальные будут пересекаться с ним, создавать помехи, влиять на итоговую скорость – это негативное отличие от узкой полосы. А если все будет совсем плохо, через Wi-Fi даже может пострадать итоговая скорость интернета на конечных устройствах.

Так все-таки, какая ширина канала лучше – 20 или 40 МГц? Как итог:

  1. Если у вас нет соседей – ставим 40 МГц.
  2. Если есть соседи – ставим 20 МГц.
  3. Если до сих пор ничего не поняли – ставим АВТО. Тоже хороший выбор, особой разницы не будет, роутер тоже не большой дурак.

О том же примерно пишется и в справках роутеров:

Можно провести испытания методом тыка – поставили 40 МГц. Проверили работу в течение пары дней. Если что-то не понравилось, поставили 20 МГц на еще пару дней. Сравнили.

Для теоретиков же можно предварительно посмотреть загрузку по каналам перед выбором режима с помощью того же inSSIDer.

Или вот еще интересное видео по выбору канала (а от него и ширины):

Как изменить?

Изменять ширину канала нужно в настройках самой точки доступа. Пусть в нашем случае это будет самый обычный домашненький роутер. Для начала нужно войти в настройки своего роутера и выбрать настройки беспроводной сети.

Как это сделать – тема не этой статьи. Каждый роутер немного отличается друг от друга, рекомендую воспользоваться поиском по нашему сайту и ввести туда свою модель – у нас очень много инструкций по настройке маршрутизаторов почти под любую модель. Там же прочитаете и про вход в веб-конфигуратор.

Ну а там уже все будет выглядеть примерно вот так (на примере своего TP-Link):

На других роутерах нередко называется Bandwidth или Channel Width.

Не забывайте сохранять настройки! А то бывают у нас в вопросах отдельные случаи…

Вот вроде бы и все. Наш портал рассчитан на обычного пользователя, без лишних заумностей, так что рекомендация – смело ставьте 20/40 MHz и не чурайтесь такой автоматики. В 99% случаев это работает идеально. На этом прощаюсь, всем хорошего дня!

какой канал выбрать для WiFi роутер и как найти лучший?

Каналы WiFi (channel) — некие подчастоты, на которых происходит подключение маршрутизатора к Сети. От правильности их выбора зависят многие характеристики Интернета, а именно количество помех, скорость, стабильность соединения и другие. Вопрос в том, какой канал Вай Фай лучше выбрать, и как его поменять в роутерах разных моделей.

Что такое каналы WiFi, в чем суть параметра

Современны роутеры поддерживаются от 1 до 23 каналов в зависимости от частоты, модели маршрутизатора, страны и иных факторов. При этом сам channel представляет собой некую подчастоту, которая используется для работы девайса. Чем больше устройств работает на одном channel, тем больше число помех, и тем ниже пропускная способность. Вот почему каждый пользователь должен знать, какой канал выбрать для WiFi роутера.

Сразу отметим, что современные маршрутизаторы работают на двух типах частот:

  1. 2,4 ГГц — устаревший вариант частоты, которую поддерживает больше всего девайсов. Число channel WiFi ограничивается 13, в некоторых странах, к примеру, в США, их всего 11. Это ведет к повышению числа помех и появлению проблем с сетью. Применяемый стандарт — до 802.11n.
  2. 5 ГГц — более современная частота, позволяющая работать на большем числе channel. При рассмотрении вопроса, какой канал лучше выбрать для WiFi на частоте 5 ГГц, у администратора сети больше вариантов — 23. Применяемые стандарты от 802.11ac и выше.

Параметры задает администратор — человек, у которого имеется доступ к настройкам WiFi роутера. Как вносить эти изменения мы рассмотрим в последнем разделе статьи.

Отметим, что в сети Вай-Фай существует два типа channel — перекрывающиеся и неперекрывающиеся. В последнем случае речь идет о номерах 1, 6 и 11. Считается, что их установка дает наименьшее число помех. Но это не всегда так. Чтобы выбрать оптимальный канал WiFi, необходимо провести анализ сети.

В процессе поиска нужно быть внимательным. Если много оборудования подключено к одному channel, это влияет на скорость и качество связи, а также число помех. Такая ситуация происходит, когда много соседей сидят, к примеру, на 11 подчастоте. Для решения проблемы ее необходимо изменить.

Но помните, что это далеко не единственный фактор, который влияет на загрузку. Например, до сих пор не утихают споры на тему: влияет ли роутер на скорость.

Как найти свободный канал

Во избежание рассмотренных выше ситуаций необходимо знать, как выбрать свободный канал WiFi. Во многих роутерах по умолчанию установлен автоматический выбор channel. Маршрутизатор в момент подключения сам определяет наименее загруженную подчастоту и соединяется к ней. Но такой способ не всегда работает. Для большей надежности лучше самому проверить каналы Вай Фай и найти оптимальный вариант.

Для ПК на Виндовс выделяется две популярные программы. Рассмотрим их подробнее:

  • inSSIDer — популярная программа, которая доступна для ПК или смартфонов на Андроид. Скачать ее можно в Интернете, если вбить в поиск название.  Перед сканированием сети запустите WiFi на оборудовании, войдите в программу, а там перейдите в раздел Networks. В нем вы увидите доступные подключения и собственную сеть. Обратите внимание на раздел Channel и приведенные в нем сведения. Теперь остается выбрать, какой канал WiFi лучше использовать. К примеру, если тестирование показало наличие свободного канала, его и можно выбрать. Не удивляйтесь, если во время проверки система покажет использование сразу двух подчастот. Это связано с тем, что роутер настроен на ширину канала в 40 МГц. Если установить отметку в 20 МГц, таких пересечений не будет.

  • WiFi Info View — еще одна программа для выбора канала WiFi роутера. Ее преимущество в небольшом весе и отсутствии необходимости установки. Здесь отображается меньше данных, чем в рассмотренной выше программе, но их достаточно для получения сведений о занятых подчастотах. Перед тем как выбрать канал на WiFi роутере, войдите в раздел Channel и посмотрите степень загрузки.

Для телефонов на Андроид можно использовать еще одну программу, доступную для скачивания в Play Market. Ее название WiFi Analizer.

Как выбрать оптимальный channel

После проведенного анализа решение вопроса, как выбрать лучший канал для WiFi сети, занимает меньше времени. Как правило, достаточно указать наименее загруженный channel. При этом начните с непересекающихся подчастот, а именно 1, 6 или 11. Если они загружены, выберите другие варианты. Будьте осторожны с номерами 12 или 13, ведь в случае их установки некоторые девайсы могут вообще не подключиться к WiFi из-за отсутствия поддержки.

Инструкция для разных моделей по смене

С помощью специальных программ мы разобрались, какой канал WiFi лучше использовать для защиты от помех и улучшения скорости соединения. Если пользователь ранее не менял настройки, по умолчанию стоит автоматическое определение нужной подчастоты. После каждой перезагрузки или при новом подключении маршрутизатор определяет новый channel с учетом текущей загрузки.

Зная, как правильно выбрать канал для WiFi, можно вручную определить необходимый параметр и установить его в настройках. Общий алгоритм действий имеет такие шаги:

  1. Перейдите в настройки маршрутизатора для внесения изменений. Необходимые данные для входа можно найти на днище роутера или его коробке.
  2. В настроечном разделе войдите в параметры WiFi. Если маршрутизатор работает с двумя частотами на 2,4 и 5,0 ГГц, могут потребоваться отдельные настройки.
  3. В параметрах отыщите нужное число и выберите его.
  4. Сохраните внесенные изменения и перезапустите роутер.

В большинстве устройств для входа в настроечный режим используются IP-адреса 192.168.0.1 или 192.168.1.1. Что касается данных для авторизации, достаточно внести в секцию логин и пароль слово admin. В некоторых ситуациях второе поле оставляется пустым. Также в настройках можно выбрать ширину канала WiFi на роутере и внести другие изменения.

Подходы к настройке канала индивидуальны для каждого маршрутизатора. Выделим рекомендации для нескольких моделей:

  • TP-Link (старый интерфейс). Для внесения правок войдите в Беспроводный режим, а там в Основные настройки. Найдите ссылку Канал и установите нужное значение. После этого кликните на кнопку Сохранить и перезапустите роутер.

Для нового интерфейса войдите в раздел Беспроводной режим, а после кликните на пункт настройки беспроводного режима. В основном поле должен быть пункт Channel WiFi с возможностью установки нового значения. Как и в прошлом случае, сохраняем данные и перезагружаемся.

  • ASUS. Пользователям этих маршрутизаторов необходимо войти в настроечный раздел, а там в категорию Беспроводная сеть (колонка Дополнительные настройки). В центральной части отыщите нужную графу и внесите изменения в номер channel. Далее жмите на кнопку применить.
  • ZyXEL Keenetic. Если под рукой устройство со старым интерфейсом, жмите на значок Интернет-сети внизу, перейдите в раздел Точка доступа 2,4 ГГц, а после выберите номер channel WiFi. Для нового интерфейса жмите на раздел Домашняя сеть, а далее перейдите в Дополнительные настройки. Там внесите нужные правки.
  • D-Link. Войдите в категорию WiFi и выберите Основные настройки. Справа отыщите пункт Канал, установите нужный параметр и жмите Применить.
  • Mercusys. Войдите в раздел Беспроводный режим, а далее Основная сеть. В центральной части выполните необходимые изменения.
  • Netis. Войдите в раздел Беспроводный режим, а там Настройки WiFi. Отыщите пункт с названием Канал и внесите изменения.
  • Tenda. Войдите в Настройки Вай-Фай, а после в пункт Канал и полоса пропускания. Там внесите нужные изменения.

Во всех случаях не забывайте сохраниться и перезапустить роутер, чтобы внесенные правки приобрели силу.

Итоги

Теперь вы знаете, какой канал поставить на WiFi, как его выбрать, и на что он влияет. Понимание этих моментов позволяет улучшить качество Интернет-сети, уменьшить число помех и повысить скорость передачи данных.

Частотные полосы и каналы WiFi в 5 GHz / Матчасть

Подразделы видеонаблюдения:

КаналЧастота, ГГц
345,17
365,18
385,19
405,2
425,21
445,22
465,23
485,24
505,25
525,26
545,27
565,28
585,29
605,3
625,31
645,32
1005,5
1045,52
1085,54
1125,56
1165,58
1205,6
1245,62
1285,64
1325,66
1365,68
1405,7
1475,735
1495,745
1505,755
1525,76
1535,765
1555,775
1575,785
1595,795
1605,8
1615,805
1635,815
1655,825
1675,835
1715,855
1735,865
1775,885
1805,905

Соответственно в РФ имеем следующие неперекрывающиеся каналы шириной 20MHz внутри помещений:

1. 5150-5250 MHz
36: 5180 MHz
40: 5200 MHz
44: 5220 MHz
48: 5240 MHz (данный канал эффективен при условии задействования следующей полосы)

2. 5250-5350 MHz
(уточняйте возможность использования данной полосы)
52: 5260 MHz
56: 5280 MHz
60: 5300 MHz
64: 5320 MHz

Порядок использования частотного спектра WiFi 5GHz в РФ (из Приложения к решению ГКРЧ от 28.04.2008, № 08-24-01-001)

Полоса 5150-5250MHz,  до 100 мВт. 

Эта полоса обычно используется для коммерческих Wi-Fi решений, использующих спектр 5GHz.

Разрешается использование только в пределах зданий, сооружений, закрытых промышленных и складских площадках.

Полоса 5250-5350MHz, до 100 мВт.

Появилась информация, что данный диапазон открыт для использования внутри помещений. Проверяйте!

  • Для локальных сетей служебной связи экипажа воздушного судна — разрешается использование на борту воздушных судов в районе аэропорта и на всех этапах полета,
  • Для локальных сетей беспроводного доступа общего пользования — разрешается использование на борту воздушных судов в полете, на высоте не менее 3000 м,

Полоса 5650-5825MHz, до 100мВт.

Разрешается использование на борту воздушных судов в полете на высоте не ниже 3000 м.

 

Источник: http://wi-life.ru/texnologii/wi-fi/wi-fi-regulyatorika

каналов Wi-Fi, диапазоны частот и полоса пропускания »Электроника

Понимание диапазонов, каналов и пропускной способности Wi-Fi может повысить производительность профессиональных беспроводных локальных сетей, а также домашних локальных сетей с маршрутизатором, повторителями Wi-Fi и т. Д.


WiFi IEEE 802.11 Включает:
Wi-Fi IEEE 802.11 введение
Стандарты
Поколения Wi-Fi Alliance
Безопасность
Как оставаться в безопасности в общедоступном Wi-Fi
Диапазоны Wi-Fi
Расположение и зона покрытия маршрутизатора
Как добиться максимальной производительности Wi-Fi
Как купить лучший Wi-Fi роутер
Бустеры, ретрансляторы и ретрансляторы Wi-Fi
Проводной Wi-Fi и удлинитель линии питания


Wi-Fi IEEE 802.11 используется очень многими устройствами, от смартфонов до ноутбуков и планшетов до удаленных датчиков, приводов телевизоров и многих других. Он используется как основной канал беспроводной связи в беспроводных локальных сетях, а также в небольших домашних сетях WLAN.

В пределах радиоспектра есть несколько полос частот, которые используются для Wi-Fi, и в них есть много каналов, которые обозначены номерами, чтобы их можно было идентифицировать.

Хотя многие каналы Wi-Fi и диапазоны Wi-Fi обычно выбираются автоматически домашними маршрутизаторами Wi-Fi, для больших беспроводных локальных сетей и систем часто необходимо планировать используемые частоты.При использовании множества точек доступа Wi-Fi вокруг большого здания или территории необходимо планирование частот, чтобы обеспечить максимальную производительность беспроводной локальной сети.

Даже для домашних систем, где используются расширители Wi-Fi и повторители Wi-Fi, полезно понять, какие частоты доступны и как их лучше всего использовать. Используя некоторые простые настройки в маршрутизаторе Wi-Fi и беспроводных расширителях, можно улучшить скорость установки сети Wi-Fi.

диапазоны ISM

Wi-Fi предназначен для использования в нелицензируемом спектре — ISM или промышленном, научном и медицинском диапазонах.Эти диапазоны согласованы на международном уровне, и в отличие от большинства других диапазонов они могут использоваться без лицензии на передачу. Это дает каждому доступ к их свободному использованию.

Полосы ISM используются не только Wi-Fi, но и всем, от микроволновых печей до многих других форм беспроводной связи и многих промышленных, научных и медицинских целей.

Хотя диапазоны ISM доступны во всем мире, в некоторых странах могут быть некоторые различия и ограничения.

Основные диапазоны, используемые для передачи Wi-Fi, указаны в таблице ниже:

Обзор основных диапазонов ISM
Нижняя частота
МГц
Верхняя частота
МГц
Комментарии
2400 2500 Этот спектр, часто называемый диапазоном 2,4 ГГц, является наиболее широко используемым из диапазонов, доступных для Wi-Fi. Используется 802.11b, g и n.Он может нести максимум три неперекрывающихся канала. Этот диапазон широко используется во многих других нелицензионных устройствах, включая микроволновые печи, Bluetooth и т. Д.
5725 5875 Эта полоса Wi-Fi 5 ГГц или, точнее, полоса 5,8 ГГц обеспечивает дополнительную полосу пропускания, а при более высокой частоте затраты на оборудование немного выше, хотя использование и, следовательно, меньше помех. Его можно использовать в стандарте 802.11a. & n. Он может передавать до 23 неперекрывающихся каналов, но дает меньший диапазон, чем 2.4 ГГц. Многие предпочитают Wi-Fi на частоте 5 ГГц из-за количества каналов и доступной полосы пропускания. Также меньше других пользователей этого диапазона.

Видно, что полоса 2,4 ГГц широко используется для других приложений, включая микроволновые печи (в результате поглощения сигнала водой), а также Bluetooth и многие другие приложения беспроводной связи. Иногда использование других диапазонов может улучшить производительность WLAN в результате более низких уровней помех.

Системы 802.11 и диапазоны частот

Используется несколько различных вариантов 802.11. Различные варианты 802.11 используют разные диапазоны. Сводка диапазонов, используемых системами 802.11, приведена ниже:

Типы 802.11 и диапазоны частот
IEEE 802.11 вариант Используемые полосы частот Комментарии
802.11a 5 ГГц Подробнее о 802.11а
802.11b 2,4 ГГц Подробнее о 802.11b
802.11 г 2,4 ГГц Подробнее о 802.11g
802.11n 2,4 и 5 ГГц Подробнее о 802.11n
802.11ac Ниже 6 ГГц Подробнее о 802.11ac
802.11ad до 60 ГГц Подробнее о 802.11ad
802.11af Пустое пространство ТВ (ниже 1 ГГц) Подробнее о 802.11af
802.11ah 700 МГц, 860 МГц, 902 МГц и т. Д. Полосы ISM зависят от страны и распределения Подробнее о 802.11ah
802.11ax Подробнее о 802.11ax

2,4 ГГц 802.11 каналов

Всего имеется четырнадцать каналов, определенных для использования установками и устройствами Wi-Fi в диапазоне ISM 2,4 ГГц. Не все каналы Wi-Fi разрешены во всех странах: 11 разрешены FCC и используются в том, что часто называется североамериканским доменом, а 13 разрешены в Европе, где каналы были определены ETSI. Каналы WLAN / Wi-Fi разнесены на 5 МГц (за исключением 12 МГц между двумя последними каналами).

Стандарты Wi-Fi 802.11 определяют полосу пропускания 22 МГц, а каналы находятся с шагом 5 МГц. Часто для каналов Wi-Fi приводятся номинальные значения 0f 20 МГц. Полоса пропускания 20/22 МГц и разделение каналов 5 МГц означает, что соседние каналы перекрываются, и сигналы на соседних каналах будут мешать друг другу.

Пропускная способность канала Wi-Fi 22 МГц соответствует всем стандартам, хотя стандарт беспроводной локальной сети 802.11b может работать на различных скоростях: 1, 2, 5,5 или 11 Мбит / с и более новый 802.Стандарт 11g может работать на скорости до 54 Мбит / с. Различия возникают в используемой схеме модуляции RF, но каналы WLAN идентичны для всех применимых стандартов 802.11.

При использовании 802.11 для обеспечения сетей Wi-Fi и подключения для офисов, при установке точек доступа Wi-Fi или для любых приложений WLAN необходимо убедиться, что параметры, такие как каналы, настроены правильно, чтобы обеспечить требуемую производительность. В наши дни на большинстве маршрутизаторов Wi-Fi это устанавливается автоматически, но для некоторых более крупных приложений необходимо настроить каналы вручную или, по крайней мере, под централизованным управлением.

Маршрутизаторы

Wi-Fi часто используют два диапазона для обеспечения двухдиапазонного Wi-Fi, диапазон 2,4 ГГц является одним из основных и чаще всего используется с диапазоном Wi-Fi 5 ГГц.

Частоты канала Wi-Fi 2,4 ГГц

В таблице ниже представлены частоты для четырнадцати каналов Wi-Fi 802.11, доступных по всему миру. Не все эти каналы доступны для установки Wi-Fi во всех странах.

Номера каналов и частоты диапазона 2,4 ГГц
Номер канала Нижняя частота
МГц
Центральная частота
МГц
Верхняя частота
МГц
1 2401 2412 2423
2 2406 2417 2428
3 2411 2422 2433
4 2416 2427 2438
5 2421 2432 2443
6 2426 2437 2448
7 2431 2442 2453
8 2436 2447 2458
9 2441 2452 2463
10 2446 2457 2468
11 2451 2462 2473
12 2456 2467 2478
13 2461 2472 2483
14 2473 2484 2495

2.Перекрытие и выбор каналов WiFi 4 ГГц

Каналы, используемые для WiFi, в большинстве случаев разделены на 5 МГц, но имеют полосу пропускания 22 МГц. В результате каналы Wi-Fi перекрываются, и можно видеть, что можно найти максимум три неперекрывающихся.

Следовательно, если есть смежные части оборудования WLAN, например, в сети Wi-Fi, состоящей из нескольких точек доступа, которые должны работать на каналах, не создающих помехи, существует только возможность трех.Ниже приведены пять комбинаций доступных неперекрывающихся каналов:

Каналы Wi-Fi 2,4 ГГц, частоты и т. Д. С указанием перекрытия и того, какие из них можно использовать в качестве наборов.

Из диаграммы выше видно, что каналы Wi-Fi 1, 6, 11 или 2, 7, 12 или 3, 8, 13 или 4, 9, 14 (если разрешено) или 5, 10 (и возможно 14, если разрешено) могут использоваться вместе как наборы. Часто маршрутизаторы WiFi настроены на канал 6 по умолчанию, и поэтому набор каналов 1, 6 и 11, вероятно, является наиболее широко используемым.

Поскольку некоторая энергия распространяется дальше за пределы номинальной полосы пропускания, если используются только два канала, то чем дальше друг от друга, тем лучше производительность.

Было обнаружено, что при наличии помех пропускная способность установки Wi-Fi снижается. Таким образом, стоит снизить уровень помех, чтобы улучшить общую производительность оборудования WLAN.

При использовании IEEE 802.11n существует возможность использования полосы пропускания сигнала 20 МГц или 40 МГц.Когда полоса пропускания 40 МГц используется для увеличения пропускной способности данных, это, очевидно, уменьшает количество каналов, которые можно использовать.

IEEE 802.11n 2,4 ГГц Wi-Fi 40 МГц каналы, частоты и номера каналов. На диаграмме выше показаны сигналы 802.11n 40 МГц. Эти сигналы обозначаются соответствующими номерами центральных каналов.

Доступность канала Wi-Fi 2,4 ГГц

Ввиду различий в распределении спектра по всему миру и различных требований регулирующих органов не все каналы WLAN доступны в каждой стране.В таблице ниже представлены общие сведения о доступности различных каналов Wi-Fi в разных частях мира.

Доступность канала Wi-Fi 2,4 ГГц
Номер канала Европа
(ETSI)
Северная Америка
(FCC)
Япония
1
2
3
4
5
6
7
8
9
10
11
12 Нет
13 Нет
14 Нет Нет 802.11b только

Эта диаграмма представляет собой только общий вид, и в разных странах могут быть различия. Например, в некоторых странах европейской зоны в Испании есть ограничения на каналы Wi-Fi, которые могут использоваться (Франция: каналы 10-13 и Испания каналы 10 и 11), использование Wi-Fi, и не разрешают использование многих каналов, которые могут считаться доступным, хотя позиция всегда может измениться.

Диапазон WiFi 3,6 ГГц

Эта полоса частот разрешена для использования только в США по схеме, известной как 802.11г. Здесь мощные станции могут использоваться для транзитных соединений Wi-Fi в сетях передачи данных и т. Д.

Каналы для этих сетевых систем Wi-Fi подробно описаны ниже.

Диапазон WiFi 3,6 ГГц
Номер канала Частота (МГц) Полоса пропускания 5 МГц Ширина полосы 10 МГц Полоса пропускания 20 МГц
131 3657,5
132 36622.5
132 3660,0
133 3667,5
133 3665,0
134 3672,5
134 3670.0
135 3677,5
136 3682,5
136 3680,0
137 3687,5
137 3685.0
138 3689,5
138 3690,0

Примечание: центральная частота канала зависит от используемой полосы пропускания. Это объясняет тот факт, что центральная частота для разных каналов различается, если используются разные полосы частот сигнала.

Каналы и частоты WiFi 5 ГГц

Поскольку диапазон 2,4 ГГц становится все более загруженным, многие пользователи предпочитают использовать диапазон ISM 5 ГГц для своих беспроводных локальных сетей, общих сетей Wi-Fi, домашних систем и т. Д. Это не только обеспечивает больший спектр, но и не так широко. используется для других бытовых приборов, включая микроволновые печи и т. д. — микроволновые печи лучше всего работают на частоте около 2,4 ГГц из-за поглощения излучения продуктами питания пиковыми значениями около 2,4 ГГц. Соответственно, Wi-Fi 5 ГГц обычно вызывает меньше помех.

Многие маршрутизаторы Wi-Fi обеспечивают возможность двухдиапазонной работы Wi-Fi с использованием этого диапазона и 2,4 ГГц, как и большинство смартфонов и других электронных устройств с поддержкой Wi-Fi. Использование частот в диапазоне 5 ГГц обычно обеспечивает более высокую скорость сети Wi-Fi.

Видно, что многие из каналов Wi-Fi 5 ГГц выходят за пределы принятого нелицензированного диапазона ISM, и в результате на работу на этих частотах накладываются различные ограничения.

Каналы и частоты WiFi 5 ГГц
Номер канала Частота МГц Европа
(ETSI)
Северная Америка
(FCC)
Япония
36 5180 В помещении
40 5200 В помещении
44 5220 В помещении
48 5240 В помещении
52 5260 В помещении / DFS / TPC ДФС DFS / TPC
56 5280 В помещении / DFS / TPC ДФС DFS / TPC
60 5300 В помещении / DFS / TPC ДФС DFS / TPC
64 5320 В помещении / DFS / TPC ДФС DFS / TPC
100 5500 DFS / TPC ДФС DFS / TPC
104 5520 DFS / TPC ДФС DFS / TPC
108 5540 DFS / TPC ДФС DFS / TPC
112 5560 DFS / TPC ДФС DFS / TPC
116 5580 DFS / TPC ДФС DFS / TPC
120 5600 DFS / TPC Нет доступа DFS / TPC
124 5620 DFS / TPC Нет доступа DFS / TPC
128 5640 DFS / TPC Нет доступа DFS / TPC
132 5660 DFS / TPC ДФС DFS / TPC
136 5680 DFS / TPC ДФС DFS / TPC
140 5700 DFS / TPC ДФС DFS / TPC
149 5745 SRD Нет доступа
153 5765 SRD Нет доступа
157 5785 SRD Нет доступа
161 5805 SRD Нет доступа
165 5825 SRD Нет доступа

Примечание 1: существуют дополнительные региональные различия для стран, включая Австралию, Бразилию, Китай, Израиль, Корею, Сингапур, Южную Африку, Турцию и т. Д.Кроме того, Япония имеет доступ к некоторым каналам ниже 5180 МГц.

Примечание 2: DFS = динамический выбор частоты; TPC = управление мощностью передачи; SRD = Устройства малого радиуса действия Максимальная мощность 25 мВт.

Дополнительные диапазоны и частоты

В дополнение к более устоявшимся формам Wi-Fi разрабатываются новые форматы, которые будут использовать новые частоты и диапазоны. Технологии, использующие использование пустого пространства и т. Д., А также новые стандарты, использующие диапазоны, которые хорошо подходят для микроволнового диапазона и будут обеспечивать гигабитные сети Wi-Fi.Эти технологии потребуют использования нового спектра для Wi-Fi.

Дополнительные диапазоны и частоты Wi-Fi
Технология Wi-Fi Стандартный Полосы частот
Белый-Fi 802.11af 470-710 МГц
Микроволновая печь Wi-Fi 802.11ad Диапазон ISM 57,0–64,0 ГГц (возможны региональные различия)
Каналы: 58,32, 60.48, 62,64 и 64,80 ГГц

По мере того, как использование технологии Wi-Fi резко возросло, а скорость передачи данных значительно выросла, изменился и способ использования диапазонов.

Wi-Fi доступен во многих местах, дома, в офисе, в кафе и т. Д. Точки доступа Wi-Fi широко доступны, часто обеспечивая работу в двух диапазонах Wi-Fi — как 2,4 ГГц, так и 5 ГГц Wi-Fi для обеспечения возможности быстрая работа в любое время.

Первоначально диапазон 2,4 ГГц был предпочтительным для Wi-Fi, но по мере того, как стоимость технологии 5 ГГц упала, эта полоса стала использоваться гораздо шире, учитывая более широкую полосу пропускания канала.

Поскольку другие технологии Wi-Fi выходят на первый план, используются многие другие частоты. Другие нелицензированные диапазоны, которые ниже 1 ГГц, а также пустое пространство для White-Fi, использующее неиспользуемый телевизионный спектр, а также теперь все более высокие частоты в микроволновом диапазоне, где доступны еще более широкие полосы, но за счет более короткого расстояния.

Каждая технология Wi-Fi имеет свои собственные частоты или диапазоны, а иногда и другое использование доступных каналов Wi-Fi.

Темы беспроводного и проводного подключения:
Основы мобильной связи
2G GSM
3G UMTS
4G LTE
5G
Вай-фай
IEEE 802.15.4
Беспроводные телефоны DECT
NFC — связь ближнего поля
Основы сетевых технологий
Что такое облако
Ethernet
Серийные данные
USB
SigFox
LoRa
VoIP
SDN
NFV
SD-WAN

Вернуться к беспроводной и проводной связи

.Объяснение

каналов Wi-Fi

Вы пытаетесь транслировать этот новый эпизод любимого шоу со своего интеллектуального устройства, и на его загрузку уходят годы — не волнуйтесь, мы все были там. Проблемы с подключением и производительностью Wi-Fi не являются чем-то необычным, особенно в сегодняшнем мире, где взрослые люди в США тратят в среднем 72 минуты в день на потоковую передачу видео со своих подключенных устройств. Так что же вызывает медленное соединение Wi-Fi и, что еще более важно, заставляет вас пропускать просмотр любимого шоу? Это может быть канал Wi-Fi, который использует ваш маршрутизатор.

Частотные диапазоны, каналы WiFi и производительность WiFi

Наши маршрутизаторы используют один из двух частотных диапазонов WiFi для сигнала: 2,4 ГГц или 5 ГГц. Некоторые маршрутизаторы являются двухдиапазонными, поэтому вы можете выбрать полосу частот для беспроводной сети (ознакомьтесь с этой статьей LifeWire о преимуществах и недостатках каждого из них). Основное различие между этими двумя полосами частот — это диапазон и ширина полосы, которые они обеспечивают. Если вы ищете большее покрытие WiFi, вам нужно использовать 2.Диапазон 4 ГГц; Если вы ищете более высокие скорости, вы хотите использовать диапазон 5 ГГц.

В этих частотных диапазонах WiFi у нас есть меньшие диапазоны, которые называются каналами WiFi. Канал Wi-Fi — это среда, через которую наши беспроводные сети могут отправлять и получать данные. Для маршрутизаторов, произведенных в США, диапазон 2,4 ГГц имеет 11 каналов, а диапазон 5 ГГц — 45 каналов.

Почему меня должно волновать, на каком канале WiFi я использую?

.

Что такое ширина канала WiFi?

У вас постоянно пропадает сигнал WiFi, или вы постоянно боретесь с низкой скоростью сети? Если любая из этих ситуаций кажется вам знакомой, высока вероятность, что ваша беспроводная сеть испытывает помехи.

Хорошая новость заключается в том, что вы не одиноки: 30% владельцев смарт-устройств сообщают, что они тоже испытывают проблемы с беспроводным подключением, многие из которых также ссылаются на то, что для облегчения своих проблем они обращаются к повторителям WiFi и ячеистым сетям. Но прежде чем искать выгодную сделку в Черную пятницу для обновления сети Wi-Fi, подумайте о том, чтобы сначала настроить ширину канала Wi-Fi на своем маршрутизаторе.

Резюме: Что такое каналы WiFi?

Прежде чем обсуждать ширину канала WiFi, давайте вспомним, что такое каналы WiFi. По сути, каналы Wi-Fi представляют собой меньшие полосы частот в полосах частот Wi-Fi, которые используются вашей беспроводной сетью для отправки и получения данных. В зависимости от того, какой диапазон частот использует ваш маршрутизатор, у вас есть определенное количество каналов WiFi на выбор:

  • 11 каналов WiFi находятся в диапазоне частот 2,4 ГГц
  • 45 каналов WiFi находятся в полосе частот 5 ГГц

Ключевой вывод здесь заключается в том, что некоторые каналы WiFi лучше использовать, чем другие, из-за помех, в частности Помехи на совмещенном канале и Помехи на соседнем канале .В первом случае устройства соревнуются за время разговора по одному и тому же каналу. В последнем случае устройства из перекрывающихся каналов пытаются общаться друг с другом. Вы можете избежать таких помех, выбрав использование неперекрывающегося незаполненного канала WiFi.

Дополнительно есть причины

.

Выберите лучший канал WiFi с NetSpot

Причина 1: Помехи в совмещенном канале

В сетях, где устройства по очереди разговаривают, каждому из них требуется время, чтобы дождаться своей очереди. Следовательно, чем больше устройств, тем больше время ожидания. Этот тип помех Wi-Fi на самом деле не является электромагнитным. Вместо этого это результат того, что маршрутизаторы Wi-Fi изо всех сил стараются предоставить друг другу пространство для передачи данных.

Вспомните, когда вы были в начальной школе, и ваш учитель задавал вопрос всему классу.Скорее всего, несколько детей начали кричать одновременно, и никто ничего не мог расслышать. По сути, это и есть помехи на совмещенном канале, поэтому маршрутизаторы Wi-Fi по очереди вежливо ждут, пока друг друга закончат.

Причина 2: Помехи в соседнем канале

Помехи по соседнему каналу возникают, когда клиенты на перекрывающихся каналах разговаривают одновременно. В таких случаях очень важно выбрать канал Wi-Fi. Такие помехи, связанные с каналом, можно уменьшить или исключить, выбрав правильный канал Wi-Fi для вашей сети.

NetSpot может помочь вам определить, какие каналы Wi-Fi загромождены больше всего, чтобы вы могли избежать их и использовать вместо них другие каналы, предпочтительно каналы 1, 6 или 11, поскольку эти три канала не перекрываются. К счастью, современные маршрутизаторы Wi-Fi способны справляться с помехами по соседнему каналу намного лучше, чем старые маршрутизаторы, многие из которых по умолчанию используют один и тот же канал Wi-Fi.

Причина 3: Помехи, не связанные с Wi-Fi

Помимо маршрутизаторов Wi-Fi, существует множество других электронных устройств, которые могут создавать помехи для 2.Диапазон 4 ГГц. Некоторые мешают ему, потому что используют его для беспроводной передачи данных, например, камеры видеонаблюдения, устройства Bluetooth, радионяни и смартфоны, в то время как другие мешают ему, потому что они излучают большое количество электромагнитного излучения, такого как микроволновые печи и другие устройства.

Чтобы избежать помех, не связанных с Wi-Fi, важно размещать маршрутизатор Wi-Fi подальше от всех источников электромагнитного излучения, желательно также подальше от твердых предметов, включая стены, большие предметы мебели и т. Д.

Сканер каналов Wi-Fi, например NetSpot, помогает просматривать сеть и выбирать правильный канал или уменьшать помехи Wi-Fi. Использование сканера каналов NetSpot поможет вам улучшить производительность вашей сети Wi-Fi 2,4 ГГц.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *