Разное

32 это 2 в степени: Таблица степеней 2 (двойки)

Содержание

Таблица степеней 2 (двойки)


Приведенная таблица кроме степени двойки показывает максимальные числа, которые может хранить компьютер для заданного числа бит. Причем как для целых так и чисел со знаком.



Исторически сложилось, что компьютеры используют двоичную систему счисления, а, соответственно, и хранения данных. Таким образом, любое число можно представить как последовательность нулей и единиц (бит информации). Существует несколько способов представления чисел в виде двоичной последовательности. 



Рассмотрим наиболее простой из них — это целое положительное число. Тогда чем больше число нам нужно записать, тем более длинная последовательность бит нам необходима.


Ниже представлена таблица степеней числа 2. Она даст нам представление необходимого числа бит, которое нам необходимо для хранения чисел.

Как пользоваться таблицей степеней числа два


Первый столбец — это степень двойки, который одновременно, обозначает число бит, которое представляет число.


Второй столбец — значение двойки в соответствующей степени (n)


Пример нахождения степени числа 2. Находим в первом столбце число 7. Смотрим по строке вправо и находим значение два в седьмой степени (27) — это 128


Третий столбец — максимальное число, которое можно представить с помощью заданного числа бит (в первом столбце). 


Пример определения максимального целого числа без знака. Если использовать данные из предыдущего примера, мы знаем, что 27 = 128. Это верно, если мы хотим понять, какое количество чисел, можно представить с помощью семи бит. Но, поскольку первое число — это ноль, то максимальное число, которое можно представить с помощью семи бит 128 — 1 = 127 . Это и есть значение третьего столбца.




































Степень двойки (n)

Значение степени двойки
2n

Максимальное число без знака,


записанное с помощью n бит



Максимальное число со знаком, 


записанное с помощью n бит


0

1

-

-

1

2

1

-

2

4

3

1

3

8

7

3

4

16

15

7

5

32

31

15

6

64

63

31

7

128

127

63

8

256

255

127

9

512

511

255

10

1 024

1 023

511

11

2 048

2 047

1023

12

40 96

4 095

2047

13

8 192

8 191

4095

14

16 384

16 383

8191

15

32 768

32 767

16383

16

65 536

65 535

32767

17

131 072

131 071

65 535

18

262 144

262 143

131 071

19

524 288

524 287

262 143

20

1 048 576

1 048 575

524 287

21

2 097 152

2 097 151

1 048 575

22

4 194 304

4 194 303

2 097 151

23

8 388 608

8 388 607

4 194 303

24

16 777 216

16 777 215

8 388 607

25

33 554 432

33 554 431

16 777 215

26

67 108 864

67 108 863

33 554 431

27

134 217 728

134 217 727

67 108 863

28

268 435 456

268 435 455

134 217 727

29

536 870 912

536 870 911

268 435 455

30

1 073 741 824

1 073 741 823

536 870 911

31

2 147 483 648

2 147 483 647

1 073 741 823

32

4 294 967 296

4 294 967 295

2 147 483 647


Необходимо принять во внимание, что не все числа в компьютере представлены таким образом. Существуют и другие способы представления данных. Например, если мы хотим записывать не только положительные, но и отрицательные числа, то нам потребуется еще один бит для хранения значения «плюс/минус». Таким образом, количество бит, предназначенных для хранения чисел у нас уменьшилось на один. Какое максимальное число может быть записано в виде целого числа со знаком можно посмотреть в четвертом столбце.


Для этого же самого примера ( 27 ) семью битами можно записать максимум число +63, поскольку один бит занят знаком «плюс». Но мы можем хранить и число «-63», что было бы невозможно, если бы все биты были бы зарезервированы под хранение числа.


Примеры использования таблицы степеней числа два


Например, нам необходимо узнать, в какую степень нужно возвести число 2, чтобы получить 256. Во втором столбце находим число 256 и считываем, что 256 это два в степени восемь.

Аналогично, 2 в 11 степени равно 2048.

2 в 13 степени равно 8,192.

2 в 15 степени равно 32,768

2 в 17 степени равно 131,072



 Хранение и кодирование информации |

Описание курса

| Использование электронных таблиц Excel 

   

Таблица степеней по алгебре

На этой странице размещена таблица степеней от 2 до 10 для натуральных чисел от 1 до 20. Пример использования: находим в таблице число 9 (слева), затем во втором столбике видим квадрат числа, который равен 81. В третьем столбце таблицы значения кубов. Смотрите также: таблица квадратов, таблица корней.

https://uchim.org/matematika/tablica-stepenej — uchim.org

Таблица степеней

Пример: 23=8

Степень:
Число2345678910
2481632641282565121 024
3927812437292 1876 56119 68359 049
416642561 0244 09616 38465 536262 1441 048 576
5251256253 12515 62578 125390 6251 953 1259 765 625
6362161 2967 77646 656279 9361 679 61610 077 69660 466 176
7493432 40116 807117 649823 5435 764 80140 353 607282 475 249
8645124 09632 768262 1442 097 15216 777 216134 217 7281 073 741 824
9817296 56159 049531 4414 782 96943 046 721387 420 4893 486 784 401
101001 00010 000100 0001 000 00010 000 000100 000 0001 000 000 00010 000 000 000
111211 33114 641161 0511 771 56119 487 171214 358 8812 357 947 69125 937 424 601
121441 72820 736248 8322 985 98435 831 808429 981 6965 159 780 35261 917 364 224
131692 19728 561371 2934 826 80962 748 517815 730 72110 604 499 373137 858 491 849
141962 74438 416537 8247 529 536105 413 5041 475 789 05620 661 046 784289 254 654 976
152253 37550 625759 37511 390 625170 859 3752 562 890 62538 443 359 375576 650 390 625
162564 09665 5361 048 57616 777 216268 435 4564 294 967 29668 719 476 7361 099 511 627 776
172894 91383 5211 419 85724 137 569410 338 6736 975 757 441118 587 876 4972 015 993 900 449
183245 832104 9761 889 56834 012 224612 220 03211 019 960 576198 359 290 3683 570 467 226 624
193616 859130 3212 476 09947 045 881893 871 73916 983 563 041322 687 697 7796 131 066 257 801
204008 000160 0003 200 00064 000 0001 280 000 00025 600 000 000512 000 000 00010 240 000 000 000
214419 261194 4814 084 10185 766 1211 801 088 54137 822 859 361794 280 046 58116 679 880 978 201
2248410 648234 2565 153 632113 379 9042 494 357 88854 875 873 5361 207 269 217 79226 559 922 791 424
2352912 167279 8416 436 343148 035 8893 404 825 44778 310 985 2811 801 152 661 46341 426 511 213 649
2457613 824331 7767 962 624191 102 9764 586 471 424110 075 314 1762 641 807 540 22463 403 380 965 376
2562515 625390 6259 765 625244 140 6256 103 515 625152 587 890 6253 814 697 265 62595 367 431 640 625

Свойства степени — 2 части

Таблица основных степеней по алгебре в компактном виде (картинка, удобно, чтобы распечатать), сверху числа, сбоку степени:

(можно открыть в новом окне, нажав на картинку)

Полную математическую таблицу можно бесплатно скачать, просто сохранив картинку выше с помощью правой кнопки мыши.

Всё для учебы » Математика в школе » Таблица степеней по алгебре

Чтобы добавить страницу в закладки, нажмите Ctrl+D.

Если страница помогла, сохраните её и поделитесь ссылкой с друзьями:

Ссылка: https://uchim.org/matematika/tablica-stepenej

📝Таблица чисел от 1 до 25 в степени от 1 до 10

При решении разных математических упражнений часто приходится заниматься возведением числа степень, в основном от 1 до 10. И для того, что бы быстрее находить эти значения и нами создана таблицу степеней по алгебре, которую я опубликую на этой странице.

Также у нас вы можете посмотреть таблицы квадратов и кубов.

Для начала рассмотрим числа от 1 до 6. Результаты здесь ещё не очень большие все из них вы можете проверить на обычном калькуляторе.

  • 1 и 2 в степени от 1 до 10
    11= 1
    12= 1
    13= 1
    14= 1
    15= 1
    16= 1
    17= 1
    18= 1
    19= 1
    110= 1
    21= 2
    22= 4
    23= 8
    24= 16
    25= 32
    26= 64
    27= 128
    28= 256
    29= 512
    210= 1 024
  • 3 и 4 в степени от 1 до 10
    3 1 = 3
    3 2 = 9
    3 3 = 27
    3 4 = 81
    3 5 = 243
    3 6 = 729
    3 7 = 2 187
    3 8 = 6 561
    3 9 = 19 683
    3 10 = 59 049
    4 1 = 4
    4 2 = 16
    4 3 = 64
    4 4 = 256
    4 5 = 1 024
    4 6 = 4 096
    4 7 = 16 384
    4 8 = 65 536
    4 9 = 262 144
    4 10 = 1 048 576
  • 5 и 6 в степени от 1 до 10
    5 1 = 5
    5 2 = 25
    5 3 = 125
    5 4 = 625
    5 5 = 3 125
    5 6 = 15 625
    5 7 = 78 125
    5 8 = 390 625
    5 9 = 1 953 125
    5 10 = 9 765 625
    6 1 = 6
    6 2 = 36
    6 3 = 216
    6 4 = 1 296
    6 5 = 7 776
    6 6 = 46 656
    6 7 = 279 936
    6 8 = 1 679 616
    6 9 = 10 077 696
    6 10 = 60 466 176
  • 7 и 8 в степени от 1 до 10
    7 1 = 7
    7 2 = 49
    7 3 = 343
    7 4 = 2 401
    7 5 = 16 807
    7 6 = 117 649
    7 7 = 823 543
    7 8 = 5 764 801
    7 9 = 40 353 607
    7 10 = 282 475 249
    8 1 = 8
    8 2 = 64
    8 3 = 512
    8 4 = 4 096
    8 5 = 32 768
    8 6 = 262 144
    8 7 = 2 097 152
    8 8 = 16 777 216
    8 9 = 134 217 728
    8 10 = 1 073 741 824
  • 9 и 10 в степени от 1 до 10
    9 1 = 9
    9 2 = 81
    9 3 = 729
    9 4 = 6 561
    9 5 = 59 049
    9 6 = 531 441
    9 7 = 4 782 969
    9 8 = 43 046 721
    9 9 = 387 420 489
    9 10 = 3 486 784 401
    10 1 = 10
    10 2 = 100
    10 3 = 1 000
    10 4 = 10 000
    10 5 = 100 000
    10 6 = 1 000 000
    10 7 = 10 000 000
    10 8 = 100 000 000
    10 9 = 1 000 000 000
    10 10 = 10 000 000 000
  • 11 и 12 в степени от 1 до 10
    11 1 = 11
    11 2 = 121
    11 3 = 1 331
    11 4 = 14 641
    11 5 = 161 051
    11 6 = 1 771 561
    11 7 = 19 487 171
    11 8 = 214 358 881
    11 9 = 2 357 947 691
    11 10 = 25 937 424 601
    12 1 = 12
    12 2 = 144
    12 3 = 1 728
    12 4 = 20 736
    12 5 = 248 832
    12 6 = 2 985 984
    12 7 = 35 831 808
    12 8 = 429 981 696
    12 9 = 5 159 780 352
    12 10 = 61 917 364 224
  • 13 и 14 в степени от 1 до 10
    13 1 = 13
    13 2 = 169
    13 3 = 2 197
    13 4 = 28 561
    13 5 = 371 293
    13 6 = 4 826 809
    13 7 = 62 748 517
    13 8 = 815 730 721
    13 9 = 10 604 499 373
    13 10 = 137 858 491 849
    14 1 = 14
    14 2 = 196
    14 3 = 2 744
    14 4 = 38 416
    14 5 = 537 824
    14 6 = 7 529 536
    14 7 = 105 413 504
    14 8 = 1 475 789 056
    14 9 = 20 661 046 784
    14 10 = 289 254 654 976
  • 15 и 16 в степени от 1 до 10
    15 1 = 15
    15 2 = 225
    15 3 = 3 375
    15 4 = 50 625
    15 5 = 759 375
    15 6 = 11 390 625
    15 7 = 170 859 375
    15 8 = 2 562 890 625
    15 9 = 38 443 359 375
    15 10 = 576 650 390 625
    16 1 = 16
    16 2 = 256
    16 3 = 4 096
    16 4 = 65 536
    16 5 = 1 048 576
    16 6 = 16 777 216
    16 7 = 268 435 456
    16 8 = 4 294 967 296
    16 9 = 68 719 476 736
    16 10 = 1 099 511 627 776
  • 17 и 18 в степени от 1 до 10
    17 1 = 17
    17 2 = 289
    17 3 = 4 913
    17 4 = 83 521
    17 5 = 1 419 857
    17 6 = 24 137 569
    17 7 = 410 338 673
    17 8 = 6 975 757 441
    17 9 = 118 587 876 497
    17 10 = 2 015 993 900 449
    18 1 = 18
    18 2 = 324
    18 3 = 5 832
    18 4 = 104 976
    18 5 = 1 889 568
    18 6 = 34 012 224
    18 7 = 612 220 032
    18 8 = 11 019 960 576
    18 9 = 198 359 290 368
    18 10 = 3 570 467 226 624
  • 19 и 20 в степени от 1 до 10
    19 1 = 19
    19 2 = 361
    19 3 = 6 859
    19 4 = 130 321
    19 5 = 2 476 099
    19 6 = 47 045 881
    19 7 = 893 871 739
    19 8 = 16 983 563 041
    19 9 = 322 687 697 779
    19 10 = 6 131 066 257 801
    20 1 = 20
    20 2 = 400
    20 3 = 8 000
    20 4 = 160 000
    20 5 = 3 200 000
    20 6 = 64 000 000
    20 7 = 1 280 000 000
    20 8 = 25 600 000 000
    20 9 = 512 000 000 000
    20 10 = 10 240 000 000 000
  • 21 и 22 в степени от 1 до 10
    21 1 = 21
    21 2 = 441
    21 3 = 9 261
    21 4 = 194 481
    21 5 = 4 084 101
    21 6 = 85 766 121
    21 7 = 1 801 088 541
    21 8 = 37 822 859 361
    21 9 = 794 280 046 581
    21 10 = 16 679 880 978 201
    22 1 = 22
    22 2 = 484
    22 3 = 10 648
    22 4 = 234 256
    22 5 = 5 153 632
    22 6 = 113 379 904
    22 7 = 2 494 357 888
    22 8 = 54 875 873 536
    22 9 = 1 207 269 217 792
    22 10 = 26 559 922 791 424
  • 23 и 24 в степени от 1 до 10
    23 1 = 23
    23 2 = 529
    23 3 = 12 167
    23 4 = 279 841
    23 5 = 6 436 343
    23 6 = 148 035 889
    23 7 = 3 404 825 447
    23 8 = 78 310 985 281
    23 9 = 1 801 152 661 463
    23 10 = 41 426 511 213 649
    24 1 = 24
    24 2 = 576
    24 3 = 13 824
    24 4 = 331 776
    24 5 = 7 962 624
    24 6 = 191 102 976
    24 7 = 4 586 471 424
    24 8 = 110 075 314 176
    24 9 = 2 641 807 540 224
    24 10 = 63 403 380 965 376
  • 25 в степени от 1 до 10
    25 1 = 25
    25 2 = 625
    25 3 = 15 625
    25 4 = 390 625
    25 5 = 9 765 625
    25 6 = 244 140 625
    25 7 = 6 103 515 625
    25 8 = 152 587 890 625
    25 9 = 3 814 697 265 625
    25 10 = 95 367 431 640 625

Хочу напомнить:

Для того, что бы возвести число «a» в степень «b» надо «a» умножить само на себя «b» раз!

Вот, например, в начале изучения компьютера мы рассматриваем двоичный код – то есть язык, на котором «разговаривает» компьютер. И там часто используются разные степени двойки, которые надо знать. От вы знаете, сколько будет два в восьмой?

Материалы по теме:

Поделиться с друзьями:

Загрузка…

Умножение степеней, деление, таблица

Что такое степень числа

Алгебра дает нам такое определение: 

«Степенью n числа а является произведение множителей величиной а n-раз подряд»

  • an — степень, где

a — основание степени

n — показатель степени

Соответственно, an= a·a·a·a…·a

Читается такое выражение, как a в степени n

Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить это число (основание степени) на само себя.

А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число — она решается довольно просто:

2 — основание степени

3 — показатель степени

Действия, конечно, можно выполнять и на калькуляторе — вот несколько подходящих:

Таблица степеней

Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3). Неважно в какой класс перешел ребенок — таблица пригодится всегда.

Число

Вторая степень

Третья степень

1

1

1

2

4

8

3

9

27

4

16

64

5

25

125

6

36

216

7

49

343

8

64

512

9

81

729

10

100

1000

Свойства степеней: когда складывать, а когда вычитать

Степень в математике с натуральным показателем имеет несколько важных свойств, которые позволяют упрощать вычисления. Всего их пять штук и ниже мы их рассмотрим.

Свойство 1: произведение степеней

При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем:

an · am = am+n

a — основание степени

m, n — показатели степени, любые натуральные числа.

Свойство 2: частное степеней

Когда мы делим степени с одинаковыми основаниями, основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя.

 

a — любое число, не равное нулю

m, n — любые натуральные числа такие, что m > n

Свойство 3: возведение степени в квадрат

Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга.

(an)m = an· m 

a — основание степени (не равное нулю)

m, n — показатели степени, натуральное число

Свойство 4: степень возведения

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b)n = an · bn

a, b — основание степени (не равное нулю)

n — показатели степени, натуральное число

Свойство 5: степень частного

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

(a : b)n = an : bn

a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0, 

n — показатель степени, натуральное число

Умножение чисел с одинаковыми степенями

Для того, чтобы произвести умножение степеней с одинаковыми показателями, нужно перемножить основания, а показатель степени оставить неизменным:

an · bn = (a · b)n , где

a, b — основание степени (не равное нулю)

n — показатели степени, натуральное число

  • a5 · b5 = (a·a·a·a·a) ·(b·b·b·b·b) = (ab)·(ab)·(ab)·(ab)·(ab) = (ab)5
  • 35 · 45 = (3·4)5 = 125 = 248 832
  • 16a2 = 42·a2 = (4a)2

Умножение степеней с одинаковыми основаниями

Степени с одинаковыми основаниями умножаются путём сложения показателей степеней:

am · an= am+n, где

a — основание степени

m, n — показатели степени, любые натуральные числа

  • 35 · 32 = 35+3 = 38 = 6561
  • 28 · 81= 28 · 23 = 211 = 2048 

Умножение чисел с разными степенями

Если степени разные, но основания одинаковые, то действия производим согласно правилу, описанному выше. А именно:

an · bn = (a · b)n

Если же разные и степени, и основания и одно из оснований не преобразуется в число с той же степенью, как у другого числа (как здесь: 28 · 81= 28 · 23 = 211 = 2048), то производим возведение в степень каждого числа и лишь затем умножаем:

Деление степеней с одинаковыми основаниями

Деление степеней с разными основаниями, но одинаковыми показателями осуществляется по следующей формуле: показатели отнимаются, а основание остается неизменным.

a — любое число, не равное нулю

m, n — любые натуральные числа такие, что m > n

Деление чисел с одинаковыми степенями

При делении степеней с одинаковыми показателями результат частного этих чисел возводится в степень:

an : bn = (a : b)n, где 

a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0, 

n — показатель степени, натуральное число

Деление чисел со степенями

Если степени разные, но основания одинаковые, то действия производим согласно правилу, описанному выше. А именно:



Если же разные и степени, и основания, то возводим в степень каждое число и только потом умножаем:

Подготовиться к сложной контрольной ребенку помогут в детской онлайн-школе Skysmart. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. Запишите вашего ребенка на бесплатный вводный урок математики и начните заниматься ей с удовольствием уже завтра.

основание и показатель степени. Онлайн калькулятор

Степень числа — это выражение, обозначающее краткую запись произведения одинаковых сомножителей.

Рассмотрим умножение одинаковых чисел, например:

5 · 5 · 5 = 125.

Произведение  5 · 5 · 5  можно записать так:  53  (пять в третьей степени). Выражение  53  — это степень. Следовательно,

5 · 5 · 5 = 53 = 125.

Рассмотрим выражение  53 . В этом выражении число  5  — основание степени, а число  3  — показатель степени.

Основание степени — это повторяющийся множитель. Показатель степени — это число, указывающее количество повторений, то есть показатель степени показывает сколько одинаковых множителей содержится в произведении.

Читаются степени так:

  • 72  —  семь во второй степени.

    Вторую степень числа также называют квадратом этого числа. Следовательно, выражение 72 можно прочесть так: семь в квадрате или квадрат числа семь.


  • 23  —  два в третьей степени.

    Третью степень числа также называют кубом этого числа. Следовательно, выражение 23 можно прочесть так: два в кубе или два куб.


  • 64  —  шесть в четвёртой степени.

  • 1015  —  десять в пятнадцатой степени.

  • an  —  a  в энной степени  или  a  в степени эн.

Пример. Записать в виде степени:

a) 5 · 5;

б) 10 · 10 · 10 · 10;

в) 8 · 8 · 8.

Решение:

a) 5 · 5 = 52;

б) 10 · 10 · 10 · 10 = 104;

в) 8 · 8 · 8 = 83.

Возведение в степень

Возведение числа в степень — это вычисление произведения одинаковых множителей. Например, возвести число  2  в третью степень  (23)  — это значит найти произведение  2 · 2 · 2 , то есть

23 = 2 · 2 · 2 = 8.

Результат возведения в степень называется степенью (также как и само выражение, значение которого вычисляется). В выражении:

23 = 8,

2  — это основание степени,  3  — показатель степени,  8  — степень.

Пример. Вычислите:

a) 112;

б) 25;

в) 104.

Решение:

a) 112 = 11 · 11 = 121;

б) 25 = 2 · 2 · 2 · 2 · 2 = 32;

в) 104 = 10 · 10 · 10 · 10 = 10000.

Выражения со степенями. Порядок действий

Если выражение не содержит скобки и содержит степени, то сначала выполняется возведение в степень в порядке следования степеней (слева направо), а затем все остальные арифметические действия. Если выражение содержит скобки, то сначала выполняются действия в скобках, с учётом всех правил порядка выполнения действий.

Рассмотрим два выражения:

52 + 22

и

(5 + 2)2

В соответствии с порядком выполнения действий в первом случае сначала выполняется возведение в степень, а затем вычисляется сумма. Во втором случае сначала вычисляется сумма, а затем результат возводится в квадрат.

52 + 22 = 25 + 4 = 29,

(5 + 2)2 = 72 = 49.

Пример 1. Найти значение выражения:

5 · (10 — 8)3.

Решение: Сначала выполняется действие, заключённое в скобки:

1) 10 — 8 = 2.

Затем, по правилам порядка действий, выполняется возведение в степень:

2) 23 = 2 · 2 · 2 = 8.

И последним действием вычисляется произведение:

3) 5 · 8 = 40.

Ответ:  5 · (10 — 8)3 = 40.

Пример 2. Вычислить:

a) (4 + 2) · 32;

б) 3 · 52 — 50;

в) 3 · 4 + 62.

Решение:

a) (4 + 2) · 32 = 54

  1. 4 + 2 = 6
  2. 32 = 9
  3. 6 · 9 = 54

б) 3 · 52 — 50 = 25

  1. 52 = 25
  2. 3 · 25 = 75
  3. 75 — 50 = 25

в) 3 · 4 + 62 = 48

  1. 62 = 36
  2. 3 · 4 = 12
  3. 12 + 36 = 48

Калькулятор возведения в степень

Данный калькулятор поможет вам выполнить возведение в степень. Просто введите основание с показателем степени и нажмите кнопку Вычислить.

правила вычисления степеней с разными основаниями или натуральными показателями по математике и порядок этого

Одной из главных характеристик в алгебре, да и во всей математике является степень. Конечно, в 21 веке все расчеты можно проводить на онлайн-калькуляторе, но лучше для развития мозгов научиться делать это самому.

В данной статье рассмотрим самые важные вопросы, касающиеся этого определения. А именно, поймем что это вообще такое и каковы основные его функции, какие имеются свойства в математике.

Степень, свойства и действия со степенями, сложение, умножение, деление отрицательных степеней, степень с натуральным показателем, правила и формулы

Рассмотрим на примерах то, как выглядит расчет, каковы основные формулы. Разберем основные виды величины и то, чем они отличаются от других функций.

Поймем, как решать с помощью этой величины различные задачи. Покажем на примерах, как возводить в нулевую степень, иррациональную, отрицательную и др.

Что такое степень числа

Что же подразумевают под выражением «возвести число в степень»?

Степенью n числа а является произведение множителей величиной а n-раз подряд.

Математически это выглядит следующим образом: an = a * a * a * …an.

Причем, левая часть уравнения будет читаться, как a в степ. n.

Например:

  • 23 = 2 в третьей степ. = 2 * 2 * 2 = 8,
  • 42 = 4 в степ. два = 4 * 4 = 16,
  • 54 = 5 в степ. четыре = 5 * 5 * 5 * 5 = 625,
  • 105 = 10 в 5 степ. = 10 * 10 * 10 * 10 * 10 = 100000,
  • 104 = 10 в 4 степ. = 10 * 10 * 10 * 10 = 10000.

Ниже будет представлена таблица квадратов и кубов от 1 до 10.

Таблица степеней от 1 до 10

Ниже будут приведены результаты возведения натуральных чисел в положительные степени – «от 1 до 100».

Ч-ло2-ая ст-нь3-я ст-нь
111
248
3927
41664
525125
636216
749343
864512
981279
101001000

Свойства степеней

Что же характерно для такой математической функции? Рассмотрим базовые свойства.

Учеными установлено следующие признаки, характерные для всех степеней:

  • an * am = (a)(n+m),
  • an : am = (a)(n-m),
  • (ab ) m=(a)(b*m).

Проверим на примерах:

  • 23 * 22 = 8 * 4 = 32. С другой стороны 25 = 2 * 2 * 2 * 2 * 2 =32.

Аналогично:

  • 23 : 22 = 8 / 4 =2. Иначе 23-2 = 21 =2.
  • (23)2 = 82 = 64. А если по-другому? 26 = 2 * 2 * 2 * 2 * 2 * 2 = 32 * 2 = 64.

Как видим, правила работают.

А как же быть со сложением и вычитанием? Всё просто. Выполняется сначала возведение в степень, а уж потом сложение и вычитание.

Посмотрим на примерах:

  • 33 + 24 = 27 + 16 = 43,
  • 52 – 32 = 25 – 9 = 16. Обратите внимание: правило не будет выполняться, если сначала произвести вычитание: (5 3)2 = 22 = 4.
  • А вот в этом случае надо вычислять сначала сложение, поскольку присутствуют действия в скобках: (5 + 3)3 = 83 = 512.

Как производить вычисления в более сложных случаях? Порядок тот же:

  • при наличии скобок – начинать нужно с них,
  • затем возведение в степень,
  • потом выполнять действия умножения, деления,
  • после сложение, вычитание.

Есть специфические свойства, характерные не для всех степеней:

  1. Корень n-ой степени из числа a в степени m запишется в виде: am/n.
  2. При возведении дроби в степень: этой процедуре подвержены как числитель, так и ее знаменатель.
  3. При возведении произведения разных чисел в степень, выражение будет соответствовать произведению этих чисел в заданной степени. То есть: (a * b)n = an * bn.
  4. При возведении числа в отрицательную степ., нужно разделить 1 на число в той же ст-ни, но со знаком «+».
  5. Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени.
  6. Любое число в степени 0 = 1, а в степ. 1 = самому себе.

Степень с отрицательным показателем

Что делать при минусовой степени, т. е. когда показатель отрицательный?

Исходя из свойств 4 и 5 (смотри пункт выше), получается:

  • A(-n) = 1 / An, 5(-2) = 1 / 52 = 1 / 25.

И наоборот:

  • 1 / A(-n) = An, 1 / 2(-3) = 23 = 8.

А если дробь?

  • (A / B)(-n) = (B / A)n, (3 / 5)(-2) = (5 / 3)2 = 25 / 9.

Степень с натуральным показателем

Под ней понимают степень с показателями, равными целым числам.

Что нужно запомнить:

  • A0 = 1, 10 = 1, 20 = 1, 3.150 = 1, (-4)0 = 1… и т. д.
  • A1 = A, 11 = 1, 21 = 2, 31 = 3 … и т. д.

Кроме того, если (-a)2n+2, n=0, 1, 2…то результат будет со знаком «+». Если отрицательное число возводится в нечетную степень, то наоборот. Общие свойства, да и все специфические признаки, описанные выше, также характерны для них.

Дробная степень

Этот вид можно записать схемой: Am/n. Читается как: корень n-ой степени из числа A в степени m.

С дробным показателем можно делать, что угодно: сокращать, раскладывать на части, возводить в другую степень и т. д.

Степень с иррациональным показателем

Пусть α – иррациональное число, а А ˃ 0.

Чтобы понять суть степени с таким показателем, рассмотрим разные возможные случаи:

  • А = 1. Результат будет равен 1. Поскольку существует аксиома – 1 во всех степенях равна единице,
  • А˃1.
  • Аr1 ˂ Аα ˂ Аr2, r1 ˂ r2 – рациональные числа.

В этом случае наоборот: Аr2 ˂ Аα ˂ Аr1 при тех же условиях, что и во втором пункте.

Например, показатель степени число π. Оно рациональное.

  1. r1 – в этом случае равно 3,
  2. r2 – будет равно 4.
  3. Тогда, при А = 1, 1π = 1.
  4. А = 2, то 23 ˂ 2π ˂ 24, 8 ˂ 2π ˂ 16.
  5. А = 1/2, то (½)4 ˂ (½)π ˂ (½)3, 1/16 ˂ (½)π ˂ 1/8.

Для таких степеней характерны все математические операции и специфические свойства, описанные выше.

Заключение

Подведём итоги для чего же нужны эти величины, в чем преимущество таких функций? Конечно, в первую очередь они упрощают жизнь математиков и программистов при решении примеров, поскольку позволяют минимизировать расчеты, сократить алгоритмы, систематизировать данные и многое другое.

Где еще могут пригодиться эти знания? В любой рабочей специальности: медицине, фармакологии, стоматологии, строительстве, технике, инженерии, конструировании и т. д.

Источник: https://tvercult.ru/nauka/stepen-svoystva-pravila-deystviya-i-formulyi

Степенные выражения (выражения со степенями) и их преобразование

Рассмотрим тему преобразования выражений со степенями, но прежде остановимся на ряде преобразований, которые можно проводить с любыми выражениями, в том числе со степенными. Мы научимся раскрывать скобки, приводить подобные слагаемые, работать с основанием и показателем степени, использовать свойства степеней.

Что представляют собой степенные выражения?

В школьном курсе мало кто использует словосочетание «степенные выражения», зато этот термин постоянно встречается в сборниках для подготовки к ЕГЭ. В большинства случаев словосочетанием обозначаются выражения, которые содержат в своих записях степени. Это мы и отразим в нашем определении.

Степенное выражение – это выражение, которое содержит степени.

Приведем несколько примеров степенных выражений, начиная со степени с натуральным показателем и заканчивая степенью с действительным показателем.

  • Самыми простыми степенными выражениями можно считать степени числа с натуральным показателем: 32, 75+1, (2+1)5, (−0,1)4, 2233, 3·a2−a+a2, x3−1, (a2)3.
  • А также степени с нулевым показателем: 50, (a+1)0, 3+52−3,20. И степени с целыми отрицательными степенями: (0,5)2+(0,5)-22.
  • Чуть сложнее работать со степенью, имеющей рациональный  и иррациональный показатели: 26414-3·3·312, 23,5·2-22-1,5, 1a14·a12-2·a-16·b12, xπ·x1-π, 233+5.
  • В качестве показателя может выступать переменная 3x-54-7·3x-58 или логарифм x2·lgx−5·xlgx.

С вопросом о том, что такое степенные выражения, мы разобрались. Теперь займемся их преобразованием.

Основные виды преобразований степенных выражений

В первую очередь мы рассмотрим основные тождественные преобразования выражений, которые можно выполнять со степенными выражениями.

Вычислите значение степенного выражения 23·(42−12).

Решение

Все преобразования мы будем проводить с соблюдением порядка выполнения действий. В данном случае начнем мы с выполнения действий в скобках: заменим степень на цифровое значение и вычислим разность двух чисел. Имеем 23·(42−12)=23·(16−12)=23·4.

Нам остается заменить степень 23 ее значением 8 и вычислить произведение 8·4=32. Вот наш ответ.

Ответ: 23·(42−12)=32.

Упростите выражение со степенями 3·a4·b−7−1+2·a4·b−7.

Решение

Данное нам в условии задачи выражение содержит подобные слагаемые, которые мы можем привести: 3·a4·b−7−1+2·a4·b−7=5·a4·b−7−1.

Ответ: 3·a4·b−7−1+2·a4·b−7=5·a4·b−7−1.

Источник: https://Zaochnik.com/spravochnik/matematika/vyrazhenija/stepennye-vyrazhenija/

Возведение в степень

Возведение в степень — это арифметическая операция повторяющегося умножения. Если требуется перемножить число n-ное количество раз, то достаточно возвести его в n-ную степень.

Основные действия со степенями

В первую очередь степень — это повторяющееся умножение. Число 134 — это 13 × 13 × 13 × 13, где перемножаются четыре одинаковых сомножителя. Если умножить 134 на 132, то мы получим (13 × 13 × 13 × 13) × (13 × 13), что логично превращается в 136.

Это и есть первое правило возведения в степень, которое гласит: при умножении чисел, возведенных в степень, их показатели суммируются. Математически это записывается как:

Если разделить 134 на 132, то нам потребуется вычислить дробь вида:

  • (13 × 13 × 13 × 13) / (13 × 13).

Мы можем просто сократить числа в числителе и знаменателе, и в результате останется 13 × 13 = 132. Очевидно, деление чисел, возведенных в степень, соответствует вычитанию их показателей. Второе правило действий со степенями математически выглядит так: am / an = a(m – n).

Теперь давайте возведем 114 в куб, то есть в третью степень. Для этого нам потребуется вычислить выражение (11 × 11 × 11 × 11) × (11 × 11 × 11 × 11) × (11 × 11 × 11 × 11). Получилось 12 сомножителей, следовательно, при возведении в n-ную степень числа в степени m, показатели перемножаются. Третье правило записывается так: (am)n = a(m × n).

Это основные правила работы со степенными выражениями. Однако число можно возвести в отрицательную степень, дробную и нулевую. Какой результат даст выражение 150? Давайте воспользуемся вторым правилом действий степенями и попробуем разделить 154 на 154, что запишется как дробь: 154 / 154.

Очевидно, что в числителе и знаменателе стоят одни и те же числа, а когда число делится само на себя, оно превращается в единицу. Но согласно правилу действий со степенными числами это будет эквивалентно 150.

Следовательно: 154 / 154 = 150 = 1.

Таким образом, четвертое правило гласит, что любое положительное число в нулевой степени равняется единице. Выглядит это правило так: a0 = 1.

При помощи второго правила легко объяснить и работу с отрицательными степенями. К примеру, давайте разделим 82 на 84 и запишем выражение в виде дроби.

(8 × 8) / (8 × 8 × 8 × 8).

Мы можем сократить две восьмерки в числителе и знаменателе и преобразовать дробь в 1 / (8 × 8). Но согласно правилу в ответе мы должны получить 8-2. В знаменателе у нас как раз стоит восьмерка в квадрате. Таким образом:

При этом для значения -1 правило трансформируется в элегантную формулу:

И последнее правило, которое пригодится вам при работе со степенными функциями, гласит о дробных степенях. Что мы можем сделать с выражением 7(1/2). Очевидно, что возвести его в квадрат, и тогда по третьему правилу в результате у нас останется только семерка.

Степень 1/2 — это извлечение квадратного корня, так как при возведении его в квадрат мы получаем целое число. Степень 1/3 соответствует извлечению кубического корня, но как быть с показателем 2/3? Логично, что это кубический корень из числа, возведенного в квадрат.

Последнее правило гласит, что знаменатель дробного показателя означает извлечение корня, а числитель — возведение в степень. Математически это выглядит как: a(m/n) есть корень n-ной степени из am. Теперь вы знаете, как проводить любые арифметические операции со степенными выражениями.

Вы можете использовать наш калькулятор для вычисления степенных функций. Программа позволяет определить основание, показатель и результат операции. Кроме того, калькулятор сопровождается иллюстрацией графика функций: параболы, кубической параболы и параболы в n-ной степени. Рассмотрим пару примеров.

Примеры из реальной жизни

Депозит в банке

Если мы положим на банковский депозит $1 000 под годовую ставку в размере 9% годовых, то сколько денег на счету будет через 20 лет? Рост с течением времени рассчитываются по экспоненциальной формуле вида:

Рост = a × e(kt),

  • где a – начальное значение,
  •  e – константа, равная 2,718;
  • k – коэффициент роста;
  • t – время.

Для решения банковской задачи нам потребуется возвести 2,718 в степень, равную 20 × 0,09 = 1,8. Воспользуемся нашим калькулятором и введем в ячейку «Число, x =» значение 2,718, а в ячейку «Степень, n =» значение 1,8. Мы получим ответ, равный 6,049. Теперь, для подсчета суммы на банковском счету нам необходимо умножить начальное значение $1 000 на прирост в размере 6,049. В итоге, через 20 лет на депозите будет $6 049.

Школьная задача

Пусть в школьной задаче требуется построить график функции y = x2,5. Это алгебраическая задача, для решения которой требуется задаться тремя значениями «x» и вычислить соответствующие ему значения «y». После чего по найденным точкам построить график функции.

Введите в ячейку «Степень, n =» значение 2,5. После этого последовательно рассчитайте значения «y», вводя в «Число, x =» аргументы 1, 2, 3. Вы получите соответствующие значения функции 1; 5,657; 15,588. Вам останется только нарисовать кривую по найденным точкам.

Источник: https://BBF.ru/calculators/73/

Степень двойки Таблица — — — — —

.
Полномочия
из 2 Таблица

Бит
Строка
#
Power
of 2
Expo-
nent
Двоичный
Бит Вес
Десятичный
Наибольшее число
Счетчик

(адрес памяти)
Компьютер
Аппаратное обеспечение
Адресная организация
Десятичное шестнадцатеричный двоичный байтов слов
1 2 0 1 1 0001 0000 0001 Первый
байт

(8 строк
могут отсчитывать от
до 255)
Первое
слово

(16 бит)

(если мало
endian)

2 2 1 2 3 0003 0000 0011
3 2 2 4 7 0007 0000 0111
4 2 3 8 15 000F 0000 1111
5 2 4 16 31 год 001F 0001 1111
6 2 5 32 63 003F 0011 1111
7 2 6 64 127 007F 0111 1111
8 2 7 128 255 00FF 1111 1111

9

2 8 256

511

0000 01FF

Второй
байт

(16 строк
могут считать от
до 65 535)

10

2 9 512

1 023

0000 03FF

11

2 10 1,024

2 047

0000 07FF

12

2 11 2 048

4 095

0000 0FFF

13

2 12 4096

8 191

0000 1FFF

14

2 13 8192

16 383

0000 3FFF

15

2 14 16 384

32 767

0000 7FFF

16

2 15 32 768

65 535

0000 FFFF

17 2 16 65 536 131 071

0001 FFFF

Третий
байт

(24 строки
могут отсчитывать от
до 16.7M)
Второе
слово

(32 бита)

(если мало
endian)

18 2 17 131 072 262 143

0003 FFFF

19 2 18 262 144 524 287

0007 FFFF

20 2 19 524 288 1 048 575

000F FFFF

21 год 2 20 1 048 576 2 097 151

001F FFFF

22 2 21 2,097,152 4 194 303

003F FFFF

23 2 22 4 194 304 8 388 607

007F FFFF

24 2 23 8 388 608 16 777 215

00FF FFFF

25

2 24 16 777 216

33 554 431

01FF FFFF

Четвертый
байт

(32 строки
могут сосчитать
до 4.2B)
(4 гигабайта)

26

2 25 33 554 432

67 108 863

03FF FFFF

27

2 26 67 108 864

134 217 727

07FF FFFF

28

2 27 134 217 728

268 435 455

0FFF FFFF

29

2 28 268 435 456

536 870 911

1FFF FFFF

30

2 29 536 870 912

1 073 741 823

3FFF FFFF

31

2 30 1 073 741 824

2 147 483 647

7FFF FFFF

32

2 31 2 147 483 648

4 294 967 295

FFFF FFFF

Это 32-битная машинная адресация.
ограничение, если не используются двойные слова или дополнительные биты.
Хотя это известная «стена Google», относительно количества
веб-страницы, которые можно проиндексировать, Google сообщает о более 47
Проиндексировано миллиард страниц. Итак, никакой «стены».

50

60

130–680

120

90

90

70

70

.
Степень двойки таблицы
(продолж.)

Бит
Строка
#
Power
of 2
Expo-
nent
Двоичный
Бит Вес
Десятичный
Наибольшее число
Счетчик

(адрес памяти)
Компьютер
Аппаратное обеспечение
Адресная организация
Десятичное двоичный байтов слов
33 2 32

4 294 967 296

8,589,934,591

Пятый
байт
(40 строк)

Третье
слово

(48 бит)
34 2 33

8 589 934 592

17 179 869 183

35 год 2 34

17 179 869 184

34 359 738 367

36 2 35

34 359 738 368

68 719 476 735

37 2 36

68 719 476 736

137 438 953 471

38 2 37

137 438 953 472

274 ​​877 906 943

39 2 38

274 ​​877 906 944

549 755 813 887

40 2 39

549 755 813 888

1 099 511 627 775

41

2 40

1 099 511 627 776

2,199,023,255,551

Шестой
байт
(48 строк)

42

2 41

2,199,023,255,552

4 398 046 511 103

43

2 42

4 398 046 511 104

8 796 093 022 207

44

2 43

8 796 093 022 208

17 592 186 044 415

45

2 44 18 триллионов

35 184 372 088 831

46

2 45 35 триллионов

70 368 744 177 663

47

2 46 70 триллионов

140 737 488 355 327

48

2 47 140 триллионов

281 474 976 710 655

49 2 48 281 триллион

562 949 953 421 311

Седьмой
Байт
(56 строк)
Четвертое
слово

(64 бита)
50 2 49 563 триллионов

1 125 899 906 842 623

51 2 50 Один квадриллион

2,251,799,813,685,247

52 2 51 2 квадриллиона

4 503 599 627 370 495

53 2 52 4 квадриллиона

9 007 199 254 740 991

54 2 53 9 квадриллионов

18 014 398 509 481 983

55 2 54 18 квадриллионов

36 028 797 018 963 967

56 2 55 36 квадриллионов

72 057 594 037 927 935

57

2 56 72 квадриллиона

144,115,188,075,855,871

Восьмой
байт
(64 строки)

58

2 57 144 квадриллион

288,230,376,151,711,743

59

2 58 288 квадриллионов

576 460 752 303 423 487

60

2 59 576 квадриллионов

1,152,921,504,606,846,975

61

2 60 Один квинтиллион

2 305 843 009 213 693 951

62

2 61 Два квинтиллиона

4 611 686 018 427 387 903

63

2 62

9 223 372 036 854 775 807

(63 строки можно считать до 9.2
квинтиллион)

64

2 63

18,446,744,073,709,551,615

(64 строки можно считать до 18,4
квинтиллион)
Ограничение 64-битной машины

Зачем баловаться с этой дурацкой страницей?
Почему бы не пойти в РЕАЛЬНЫЙ ВЛАСТЬ —

Power
из двух — Википедия


Что до 95 -й степени
2 95

Большое спасибо ответственному редактору
Роберту Рольфу
за указание на ошибки на этой странице,
, которые все были исправлены
(я думаю и надеюсь).
.

50

60

130–680

120

90

90

70

70

.

Биты и байтовые мощности двух справочной таблицы для блоков данных

2 70

137,438,953,472

2,417,851,639,229,258,349,412,352

B бит бит кб
килобит
Мб
мегабит
ГБ
гигабит
000 бит

Байт КБ
Килобайт
МБ
Мега —
байт
ГБ
Гигабайт —
байт
ТБ
Тера —
байт
PB EB 2 73 9.444.732.965.739.290.427.392 9.223.372.036.854.775.808 9.007.199.254.740.992 8.796.093.022.208 2 70 2 73 1.180.591.620.717.411.303.424 1.152.921.504.606.846.976 1.125.899.906.842.624 1.099.511.627.776 1.073.741, 82 4 1 048 576 1,024 1
2 71 74 18,889,465,931,478,580,854,784 18,446,744,073,709,551,616 18,014,39861,19,481 9,551,616 18,014,39861,19,481 9,484 2.361.183.241.434.822.606.848 2.305.843.009.213.693.952 2.251.799.813.685.248 2.199.023.255.552 2.147.483.648 2.097.152 2.048 2
2 72 2 75 37.778.931.862.957.161.709.568 36.893.488.147.419.103.232 36.028.797.018.963.968 35.184.372.088.832 2 72 2 75 4,722,366,482,869,645,213,696 4,611,686,018,427,387,904 4,503,599,627,370,496 4,398,046,511,104 4,294,967,296 4,194,304 4,096 4
2 73 2 76 75,557,863,725,914,323,419,136 73,863,725,914,323,419,136 73,863,725,914,323,419,136 73,863,725914,323,419,136 73,786,976,294 9.444.732.965.739.290.427.392 9.223.372.036.854.775.808 9.007.199.254.740.992 8.796.093.022.208 8.589.934.592 8.388.608 8.192 8
2 74 2 77 151.115.727.451.828.646.838.272 147.573.952.589.676.412.928 144.115.188.075.855.872 140,737,488,355,328 2 74 2 77 18,889,465,931,478,580,854,784 18,446,744,073,709,551,6 16 18.014.398.509.481.984 17.592.186.044.416 17.179.869.184 16.777.216 16.384 16
2 75 2 78 302.231.454.903.657.293.676.544 295.147.905.179.352.825.856 288.230.376.151.711.744 281.474.976.710.656 2 75 2 78 37.778.931.862.957.161.709.568 36.893.488.147.419.103.232 36.028.797.018.963.968 35.184.372.088.832 34.359.738.368 33.554.432 32.768 32
2 76 2 79 604.462.909.807.314.587.353.088 590,295,810,358,705,651,712 576,460,752,303,423,488 562,949,953,421,312 2 76 2 79 75.557.863.725.914.323.419.136 73.786.976.294.838.206.464 72.057.594.037.927.936 70.368.744.177.664 68.719.476.736 67.108.864 65.536 64
2 77 2 80 1.208.925.819.614.629.174.706.176 1.180.591.620.717.411.303.424 1.152.921.504.606.846.976 1.125.899.906.842.624 2 77 2 80 151,115,727,451,828,646,838,272 783,952,589,676,412,928 144,115,188,075,855,872 140,737,488,355,328 2,361,183,241,434,822,606,848 2,305,843,009,213,693,952 2,251 , 799813685248 2 78 2 81 302,231,454,903,657,293,676,544 295,147,905,179,352,825,856 288,230,376,151,711,744 281,474,976,710,656 274877906944 268435456 262144 256
2 79 2 82 4.835.703.278.458.516.698.824.704 4.722.366.482.869.645.213.696 4.611.686.018.427.387.904 4.503.599.627.370.496 2 79 2 82 604.462.909.807.314.587.353.088 590.295.810.358.705.651.712 576.460.752.303.423.488 562.949.953.421.312 549.755.813.888 536.870.912 524.288 512

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *