Комплексные числа с нуля: Комплексные числа, примеры с решением

Содержание

Введение в комлексные числа / Хабр

Привет!

Выяснив, что многие знакомые программисты не помнят комплексные числа или помнят их очень плохо, я решил сделать небольшую шпаргалку по формулам.

А школьники могут что-то новое узнать 😉
// Всех кого заинтересовал прошу под кат.

Итак, комплексные числа эта такие числа, которые можно записать как


Где x, y вещественные числа(т.е привычные всем числа), а i — число, для которого
выполняется равенство


Кстати, -i в квадрате тоже дает -1.
Так что утверждение, что если дискрименант отрицательный, то корней нет это вранье.
А точнее оно выполняется на множестве вещественных чисел.

Т.е можем записать:


x называется действительной частью, y — мнимой.

Это алгебраическая форма записи комплексного числа.

Существует также тригонометрическая форма записи комплексного числа z:


С введением, пожалуй, все.

Переходим к самому интересному — операциям над комплексными числами!
Для начала рассмотрим сложение.

У нас есть два таких комплексных числа:


Как же их сложить?
Очень просто: сложить действительную и мнимую части.
Получим число:


Все просто, не так ли?
Вычитание выполняется аналогично сложению.
Нужно просто вычесть из действительной части 1 числа действительную часть 2 числа,
а потом проделать тоже с мнимой частью.
Получим число


Умножение выполняется вот так:


Напомню, x это действительная часть, y — мнимая.
Деление выполняется вот так:


Кстати, поддержка комплексных чисел есть в стандартной библиотеке Python:
z1=1+2j
z2=3+5j
z3=z1+z2
print(z3) #4+7i

Вместо i используется j.
Кстати, это потому что Python принял конвенцию инженеров-электриков, у которых
буква i обозначает электрический ток.
Задавайте свой вопросы, если они есть, в комментариях.
Надеюсь, вы узнали для себя что-то новое.

UPD: В комментариях просили рассказать о практическом применении.

Так вот комплексные числа нашли широкое практическое применение в авиации
(подъемная сила крыла) и в электричестве.
Как видете, очень нужная вещь 😉

Просто о сложном: комплексные числа

Комплексные числа всегда меня занимали. Как и с понятием экспоненты, большинство определений подпадали под одну из двух категорий:

  • это математическая абстракция, всё упирается в формулы. Смиритесь.
  • это используется в продвинутой физике, поверьте. Просто дождитесь университета.

Какой хороший способ привлечь деток к математике! Сегодня мы возьмем эту тему штурмом, используя наши любимые инструменты:

  • Будем основываться на связях, а не на механических формулах.
  • Рассмотрим комплексные числа как дополнение к нашей системе счисления, такому же, как ноль, дробные или отрицательные числа.
  • Визуализируем идеи в графиках, чтобы лучше понять суть, а не просто изложим сухим текстом.

И наше секретное оружие: изучение по аналогии. Мы доберемся до комплексных чисел, начав с их предков, отрицательных чисел. Вот вам небольшое руководство:

Пока что смысла в этой таблице мало, но пусть она будет рядом. К концу статьи всё станет на свои места.

Давайте действительно поймем, что такое отрицательные числа

Отрицательные числа не так просты. Представьте, что вы — европейский математик в XVIII веке. У вас есть 3 и 4, и вы можете написать 4 – 3 = 1. Всё просто.

Но сколько будет 3 – 4? Что, собственно, это означает? Как можно отнять 4 коровы от 3? Как можно иметь меньше, чем ничего?

Отрицательные числа рассматривались как полная чушь, что-то, что «бросало тень на всю теорию уравнений» (Фрэнсис Масерес, 1759). Сегодня было бы полной чушью думать об отрицательных числах, как о чем-то нелогичном и неполезном. Спросите вашего учителя, нарушают ли отрицательные числа основы математики.

Что же произошло? Мы изобрели теоретическое число, которое обладало полезными свойствами. Отрицательные числа нельзя потрогать или ощутить, но они хорошо описывают определенные связи (как задолженность, например). Это очень полезная выдумка.

Вместо того, чтобы сказать «Я должен вам 30», и читать слова, чтобы понять в плюсе я или в минусе, я могу просто записать «-30», и знать, что это означает. Если я заработаю деньги и оплачу свои долги (-30 + 100 = 70), я смогу легко записать эту транзакцию несколькими символами. У меня останется +70.

Знаки плюса и минуса автоматически фиксируют направление — вам не нужно целое предложение, чтобы описать изменения после каждой транзакции. Математика стала проще, элегантнее. Стало не важно, являются ли отрицательные числа «осязаемыми» — у них есть полезные свойства, и мы пользовались ими, пока они крепко не вошли в наш обиход. Если кто-то из ваших знакомых еще не понял суть отрицательных чисел, теперь вы ему поможете.

Но не будем умалять человеческие страдания: отрицательные числа были настоящим сдвигом в сознании. Даже Эйлер, гений, открывший число е и много еще чего, не понимал отрицательные числа так же хорошо, как мы сегодня. Они рассматривались как «бессмысленные» результаты вычислений.

Странно требовать от детей, чтобы они спокойно понимали идеи, которые когда-то смущали даже самых лучших математиков.

Ввод мнимых чисел

С мнимыми числами та же история. Мы можем решать уравнения вроде этого целыми днями:

Ответами будут 3 и -3. Но представим, что какой-то умник приписал сюда минус:

Ну и ну. Такой вопрос заставляет людей съеживаться, первый раз видя его. Вы хотите вычислить квадратный корень из числа, меньшего, чем ноль? Это немыслимо! (Исторически реально существовали подобные вопросы, но мне удобнее представлять какого-то безликого умника, чтобы не вгонять в краску ученых прошлого).

Выглядит безумно, как в свое время выглядели и отрицательные числа, ноль и иррациональные числа (неповторяющиеся числа). В этом вопросе нет «реального» смысла, правда?

Нет, не правда. Так называемые «мнимые числа» нормальны настолько же, как и все другие (или настолько же ненормальные): они являются инструментом для описания мира. В том же духе, как мы представляем, что -1, 0.3 и 0 «существуют», давайте предположим, что существует некое число i, где:

Другими словами, вы умножаете i на себя же, чтобы получить -1. Что сейчас происходит?

Ну, сначала у нас конечно болит голова. Но, играя в игру «Давайте представим, что i существует», мы действительно делаем математику проще и элегантнее. Появляются новые связи, которые мы с легкостью можем описать.

Вы не поверите в i, как и те старые математики-ворчуны не верили в существовании -1. Все новые, сворачивающие мозг в трубочку понятия сложны для восприятия, и их смысл вырисовывается не сразу, даже для гениального Эйлера. Но, как показали нам отрицательные числа, странные новые идеи могут быть чрезвычайно полезными.

Я не люблю сам термин «мнимые числа» — такое чувство, что он был выбран специально, чтобы оскорбить чувства i. Число i такое же нормальное, как и другие, но за ним закрепилась кличка «мнимое», так что мы тоже будем ей пользоваться.

Визуальное понимание отрицательных и комплексных чисел

Уравнение x^2 = 9 на самом деле означает следующее:

или

Какое преобразование x, применяемое дважды, превращает 1 в 9?

Есть два ответа: «x = 3» и «x = -3». То есть, вы можете «масштабировать в» 3 раза или «масштабировать в 3 раза и перевернуть» (переворачивание или взятие обратного результата — всё это интерпретации умножения на отрицательную единицу).

А теперь давайте подумаем об уравнении x^2 = -1, которое можно записать так:

Какое преобразование x, применяемое дважды, превращает 1 в -1? Хм.

  • Мы не можем умножить дважды положительное число, потому что результат будет положительным.
  • Мы не можем умножить дважды отрицательное число, потому что результат опять будет положительным.

А как насчёт… вращения! Звучит, конечно, необычно, но что если представить х как «поворот 90 градусов», тогда применив х дважды, мы совершим поворот на 180 градусов на координатной оси, и 1 обернется в -1!

Вот это да! И если мы еще немного над этим поразмышляем, то мы можем совершить два оборота в противоположном направлении, и также перейти с 1 на -1. Это «отрицательное» вращение или умножение на -i:

Если мы дважды умножим на-i, то при первом умножении получим -i из 1, а при втором -1 из -i. Так что на самом деле существует два квадратных корня -1: i и -i.

Это довольно круто! У нас есть что-то вроде решения, но что оно означает?

  • i — это «новая мнимая размерность» для измерения числа
  • i (или -i) — это то, чем «становятся» числа при вращении
  • Умножение на i — это вращение на 90 градусов против часовой стрелки
  • Умножение на -i — это вращение на 90 градусов по часовой стрелке.
  • Двойное вращение в любом из направлений дает -1: оно опять возвращает нас к «обычной» размерности положительных и отрицательных чисел (ось x).

Все числа 2-мерные. Да, это трудно принять, но древним римлянам было бы также трудно принять десятичные дроби или деление в столбик. (Как это так, между 1 и 2 есть еще числа?). Выглядит странно, как и любой новый способ мыслить в математике.

Мы спросили «Как превратить 1 в -1 в два действия?» и нашли ответ: повернуть 1 на 90 градусов дважды. Довольно странный, новый способ мыслить в математике. Но очень полезный. (Между прочим, эта геометрическая интерпретация комплексных чисел появилась только десятилетия спустя после открытия самого числа i).

Также, не забывайте, что принятие оборота против часовой стрелки за положительный результат — это сугубо человеческая условность, и всё могло бы быть совсем по-другому.

Поиск множеств

Давайте углубимся немного в детали. При умножении отрицательных чисел (как -1), вы получаете множество:

  • 1, -1, 1, -1, 1, -1, 1, -1

Поскольку -1 не меняет размер числа, а только знак, вы получаете одно и то же число то со знаком «+», то со знаком «-». Для числа х у вас получится:

Это очень полезная мысль. Число «х» может представлять хорошие и плохие недели. Представим, что хорошая неделя сменяет плохую; это хорошая неделя; а какой будет 47-я неделя?

-x означает, что неделя выдастся плохой. Видите, как отрицательные числа «следят за знаком» — мы можем просто ввести (-1)^47 в калькуляторе вместо того, чтобы считать («Неделя 1 хорошая, неделя 2 плохая… неделя 3 хорошая…»). Вещи, которые постоянно чередуются можно отлично смоделировать, используя отрицательные числа.

Хорошо, а что будет, если мы продолжим умножать на i?

Очень смешно, давайте немного это всё упростим:

Вот всё то же представлено графически:

Мы повторяем цикл каждый 4-й поворот. В этом определенно есть смысл, да? Любой ребенок скажет вам, что 4 поворота влево — это всё равно, что не поворачиваться вовсе. А теперь оторвитесь от мнимых чисел (i, i^2)и посмотрите на общее множество:

  • X, Y, -X, -Y, X, Y, -X, -Y…

Точно, как отрицательные числа моделируют зеркальное отражение чисел, мнимые числа могут моделировать что угодно, что вращается между двумя измерениями «Х» и «Y». Или что угодно с циклической, круговой зависимостью — есть что-нибудь на примете?

Понимание комплексных чисел

Есть еще одна деталь для рассмотрения: может ли число быть и «реальным», и «мнимым»?

Даже не сомневайтесь. Кто сказал, что нам обязательно нужно поворачивать строго на 90 градусов? Если мы одной ногой станем на «реальную» размерность, а другой — на «мнимую», то будет выглядеть примерно так:

Мы находимся на отметке в 45 градусов, где вещественная и мнимая части одинаковы, и само число равно «1 + i». Это как хот-дог, где есть и кетчуп, и горчица — кто сказал, что нужно обязательно выбирать что-то одно?

По сути, мы можем выбрать любую комбинацию вещественной и мнимой части и сделать из всего этого треугольник. Угол становится «углом вращения». Комплексное число — это заумное название для чисел, в которых есть вещественная и мнимая части. Они пишутся, как «a + bi», где:

  • a — вещественная часть
  • b — мнимая часть

Неплохо. Но остается один последний вопрос: как «велико» комплексное число? Мы не можем измерить вещественную часть или мнимую отдельно, потому что мы упустим общую картину.

Давайте сделаем шаг назад. Размер отрицательного числа — это расстояние от нуля:

Это другой способ найти абсолютную величину. Но как измерить оба компонента на 90 градусах для комплексных чисел?

Это птица в небе… или самолет… Пифагор спешит на помощь!

Эта теорема выскакивает, где только можно, даже в числах, придуманных через 2000 лет после самой теоремы. Да, мы делаем треугольник, и его гипотенуза и будет равна расстоянию от нуля:

Хоть измерить комплексное число не так просто, как «просто опустить знак -», у комплексных чисел есть очень полезные применения. Давайте рассмотрим некоторые из них.

Реальный пример: Вращения

Мы не будем дожидаться университетского курса физики, чтобы попрактиковаться с комплексными числами. Мы займемся этим уже сегодня. Много можно рассказать на тему умножения комплексных чисел, но пока нужно понять главное:

  • Умножение на комплексное число совершает вращение на его угол

Давайте посмотрим, как это работает. Представьте, что я на лодке, движусь с курсом 3 единицы на Восток каждые 4 единицы на Север. Я хочу изменить свой курс на 45 градусов против часовой стрелки. Каким будет мой новый курс?

Кто-то может сказать «Это просто! Вычислите синус, косинус, погуглите значение по тангенсу…и тогда…» Кажется, я сломал свой калькулятор…

Давайте пойдем более простым путем: мы идем по курсу 3 + 4i (не важно, какой тут угол, нам всё равно пока) и хотим повернуться на 45 градусов. Ну, 45 градусов это 1 + i (идеальная диагональ). Так что мы можем умножить наш курс на это число!

Вот в чем суть:

  • Исходный курс: 3 единицы на Восток, 4 единицы на Север = 3 + 4i
  • Вращение против часовой стрелки на 45 градусов = умножение на 1 + i

При умножении мы получаем:

Наш новый ориентир — 1 единица на Запад (-1 на Восток) и 7 единиц на Север, можете нарисовать координаты на графике и следовать им.

Но! Мы нашли ответ за 10 секунд, без всяких синусов и косинусов. Не было векторов, матриц, отслеживания, в каком квадранте мы находимся. Это была простая арифметика и немного алгебры для приведения уравнения. Мнимые числа отлично справляются с вращением!

Более того, результат такого вычисления очень полезен. У нас есть курс (-1, 7) вместо угла (atan(7/-1) = 98.13, и сразу ясно, что мы во втором квадранте. Как, собственно, вы планировали нарисовать и следовать указанному углу? Используя транспортир под рукой?

Нет, вы бы конвертировали угол в косинус и синус (-0.14 и 0.99), нашли бы примерное соотношение между ними (около 1 к 7) и набросали бы треугольник. И тут комплексные числа несомненно выигрывают — аккуратно, молниеносно, и без калькулятора!

Если вы похожи на меня, то это открытие покажется вам сногсшибательным. Если нет, боюсь, что математика вас совсем не зажигает. Уж извините!

Тригонометрия хороша, но комплексные числа значительно упрощают вычисления (вроде поиска cos(a + b)). Это только маленький анонс; в следующих статьях я предоставлю вам полное меню.

Лирическое отступление: некоторые люди думают примерно так: «Эй, ну не удобно же иметь курс Север/Восток вместо простого угла для следования судна!»

Правда? Ну хорошо, посмотрите на свою правую руку. Какой угол между основанием вашего мизинца и кончиком указательного пальца? Удачи с вашим способом вычисления.

А можно просто ответить «Ну, кончик находится на Х дюймов вправо и Y дюймов вверх» и с этим уже можно что-то сделать.

Комплексные числа стали ближе?

Мы пронеслись смерчем по моим базовым открытиям в области комплексных чисел. Посмотрите на самую первую иллюстрацию, теперь он должен стать более понятным.

Есть еще столько всего интересного в этих красивых, чудных числах, но мой мозг уже устал. Моя цель была проста:

  • Убедить вас в том, что комплексные числа только рассматривались как «сумасшествие», а на деле они могут быть очень полезными (точно как и отрицательные числа)
  • Показать, как комплексные числа могут упростить некоторые задачи вроде вращения.

Если я кажусь слишком озабоченным этой темой, то для этого есть причина. Мнимые числа годами были моей навязчивой идеей — недостаток понимания меня раздражал.

Сейчас я наконец-то дошел до этого долгожданного понимания, и мне не терпелось поделиться с вами. Но меня по-прежнему злит, что вы знакомитесь с этими замечательными, несложными приемами понимания в блоге какого-то безумного лунатика, а не в классе на уроке математики. Мы душим в себе вопросы и «пыхтим» над непонятными вещами, потому что не хотим искать, находить и делиться чистыми, абсолютно логичными объяснениями.

Но зажечь свечу лучше, чем пробираться сквозь кромешную тьму: вот мои мысли, и я уверен, что огонек зажжется и в умах моих читателей.

Эпилог: Но они по-прежнему довольно странные!

Я знаю, они и для меня всё еще выглядят странными. Я пытаюсь мыслить, как мыслил первый человек, открывший ноль.

Ноль — это такая странная идея, «что-то» представляет «ничего», и это никак не могли понять в Древнем Риме. То же самое и с комплексными числами — это новый способ мышления. Но и ноль, и комплексные числа значительно упрощают математику. Если бы мы никогда не внедряли странности вроде новых систем счисления, мы бы до сих пор считали всё на пальцах.

Я повторяю эту аналогию, потому что так легко начать думать, что комплексные числа «не нормальные». Давайте быть открытыми к новшествам: в будущем люди будут только шутить над тем, как кто-то вплоть до XXI века не верил в комплексные числа.

Перевод статьи «A Visual, Intuitive Guide to Imaginary Numbers»

Комплексные числа

Напомним необходимые сведения о комплексных числах.

Комплексное число — это выражение вида a + bi, где a, b — действительные числа, а i — так называемая мнимая единица, символ, квадрат которого равен –1, то есть i2 = –1. Число a называется действительной частью, а число b — мнимой частью комплексного числа z = a + bi. Если b = 0, то вместо a + 0i пишут просто a. Видно, что действительные числа — это частный случай комплексных чисел.

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi) ± (c + di) = (a ± c) + (b ± d)i, а умножение — по правилу (a + bi) · (c + di) = (ac – bd) + (ad + bc)i (здесь как раз используется, что i2 = –1). Число  = a – bi называется комплексно-сопряженным к z = a + bi. Равенство z ·  = a2 + b2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

.

(Например, .)

У комплексных чисел есть удобное и наглядное геометрическое представление: число z = a + bi можно изображать вектором с координатами (ab) на декартовой плоскости (или, что почти то же самое, точкой — концом вектора с этими координатами). При этом сумма двух комплексных чисел изображается как сумма соответствующих векторов (которую можно найти по правилу параллелограмма). По теореме Пифагора длина вектора с координатами (ab) равна . Эта величина называется модулем комплексного числа z = a + bi и обозначается |z|. Угол, который этот вектор образует с положительным направлением оси абсцисс (отсчитанный против часовой стрелки), называется аргументом комплексного числа z и обозначается Arg z. Аргумент определен не однозначно, а лишь с точностью до прибавления величины, кратной 2π радиан (или 360°, если считать в градусах) — ведь ясно, что поворот на такой угол вокруг начала координат не изменит вектор. Но если вектор длины r

образует угол φ с положительным направлением оси абсцисс, то его координаты равны (r · cos φ; r · sin φ). Отсюда получается тригонометрическая форма записи комплексного числа: z = |z| · (cos(Arg z) + i sin(Arg z)). Часто бывает удобно записывать комплексные числа именно в такой форме, потому что это сильно упрощает выкладки. Умножение комплексных чисел в тригонометрической форме выглядит очень просто: z1 · z2 = |z1| · |z2| · (cos(Arg z1 + Arg z2) + i sin(Arg z1 + Arg z2)) (при умножении двух комплексных чисел их модули перемножаются, а аргументы складываются). Отсюда следуют формулы Муавра: zn = |z|n · (cos(
n
 · (Arg z)) + i sin(n · (Arg z))). С помощью этих формул легко научиться извлекать корни любой степени из комплексных чисел. Корень n-й степени из числа z — это такое комплексное число w, что wn = z. Видно, что , а , где k может принимать любое значение из множества {0, 1, …, n – 1}. Это означает, что всегда есть ровно n корней n-й степени из комплексного числа (на плоскости они располагаются в вершинах правильного n-угольника).

Далее: Фрактальные размерности

Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Алгебра

Алгебраическая форма записи комплексных чисел

      Пусть x и y — произвольные вещественные числа.

      Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.

      Множество комплексных чисел является расширением множества вещественных чисел, поскольку множество вещественных чисел содержится в нём в виде пар (x, 0).

      Комплексные числа, заданные парами (0, y), называют чисто мнимыми числами.

      Для комплексных чисел существует несколько форм записи: алгебраическая форма записи, тригонометрическая форма записи и экспоненциальная (показательная) форма записи.

      Алгебраическая форма — это такая форма записи комплексных чисел, при которой комплексное число   z, заданное парой вещественных чисел   (x, y

), записывается в виде

где использован символ   i , называемый мнимой единицей.

      Число x называют вещественной (реальной) частью комплексного числа   z = x + i y   и обозначают   Re z.

      Число y называют мнимой частью комплексного числа   z = x + i y   и обозначают   Im z.

      Комплексные числа, у которых   Im z = 0 , являются вещественными числами.

      Комплексные числа, у которых     Re z = 0 , являются чисто мнимыми числами.

      Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.

Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме

      Сложение и вычитание комплексных чисел   z1 = x1 + i y1 и   z2 = x2 + i y2 осуществляется по правилам сложения и вычитания двучленов (многочленов)   x1 + i y1   и   x2 + i y2 , т.е. в соответствии с формулами

z1 + z2 =
= x1 + i y1 + x2 + i y2 =
= x1 + x2 + i (y1 + y2) ,

z1z2 =
= x1 + i y1– (x2 + i y2) =
=

x1x2 + i (y1y2) .

      Умножение комплексных чисел   z1 = x1 + i y1 и   z2 = x2 + i y2 , так же, как и операции сложения и вычитания, осуществляется по правилам умножения двучленов (многочленов), однако при этом учитывается важнейшее равенство, имеющее вид:

      По этой причине

z1z2 = (x1 + i y1) (x2 + i y2) =
= x1x2 + i x1 y2 +
+ i y1x2 + i 2y1 y2 =
= x1x2 + i x1y2 +
+ i y1x2y1 y2 =
= x1x2y1 y2 +
+ i (x1 y2 + i x2 y1) .

Комплексно сопряженные числа

      Два комплексных числа   z = x + iy   и у которых вещественные части одинаковые, а мнимые части отличаются знаком, называются комплексно сопряжёнными числами.

      Операция перехода от комплексного числа к комплексно сопряженному с ним числу называется операцией комплексного сопряжения, обозначается горизонтальной чертой над комплексным числом и удовлетворяет следующим свойствам:

Модуль комплексного числа

      Модулем комплексного числа   z = x + i y   называют вещественное число, обозначаемое | z | и определенное по формуле

      Для произвольного комплексного числа   z   справедливо равенство:

а для произвольных комплексных чисел    z1   и   z2   справедливы неравенства:

      Замечание. Если   z   — вещественное число, то его модуль   | z | равен его абсолютной величине.

Деление комплексных чисел, записанных в алгебраической форме

      Деление комплексного числа   z1 = x1 + i y1   на отличное от нуля комплексное число   z2 = x2 + i y2   осуществляется по формуле

      Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:

      Деление на нуль запрещено.

Изображение комплексных чисел радиус-векторами координатной плоскости

      Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат   Oxy   и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.

      Назовем рассматриваемую плоскость комплексной плоскостью, и будем представлять комплексное число   z = x + i y   радиус–вектором с координатами   (x , y).

      Назовем ось абсцисс Ox вещественной осью, а ось ординат Oy – мнимой осью.

      При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.

Аргумент комплексного числа

      Рассмотрим радиус–вектор произвольного, но отличного от нуля, комплексного числа   z.

      Аргументом комплексного числа z называют угол φ между положительным направлением вещественной оси и радиус-вектором    z.

      Аргумент комплексного числа  z  считают положительным, если поворот от положительного направления вещественной оси к  радиус-вектору z  происходит против часовой стрелки, и отрицательным  — в случае поворота по часовой стрелке (см. рис.).

      Считается, что комплексное число нуль аргумента не имеет.

      Поскольку аргумент любого комплексного числа определяется с точностью до слагаемого 2kπ , где  k  — произвольное целое число, то вводится, главное значение аргумента, обозначаемое   arg z   и удовлетворяющее неравенствам:

      Тогда оказывается справедливым равенство:

      Если для комплексного числа   z = x + i y   нам известны его модуль   r = | z | и его аргумент φ, то мы можем найти вещественную и мнимую части по формулам

(3)

      Если же комплексное число   z = x + i y   задано в алгебраической форме, т.е. нам известны числа   x   и   y,   то модуль этого числа, конечно же, определяется по формуле

(4)

а аргумент определяется в соответствии со следующей Таблицей 1.

      Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом  k  обозначать в Таблице 1 произвольное целое число.

      Таблица 1. – Формулы для определения аргумента числа   z = x + i y

Расположение числа   z :

Положительная вещественная полуось

Знаки x и y :

x > 0 ,   y = 0

Главное значение аргумента:

0

Аргумент:

φ = 2kπ

Примеры:

Расположение числа   z :

Первый квадрант

Знаки x и y :

x > 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Положительная мнимая полуось

Знаки x и y :

x = 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Второй квадрант

Знаки x и y :

x < 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Отрицательная вещественная полуось

Знаки x и y :

x < 0 ,   y = 0

Главное значение аргумента:

π

Аргумент:

φ = π + 2kπ

Примеры:

Расположение числа   z :

Третий квадрант

Знаки x и y :

x < 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Отрицательная мнимая полуось

Знаки x и y :

x = 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Четвёртый квадрант

Знаки x и y :

x < 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Тригонометрическая форма записи комплексного числа

      Из формулы (3) вытекает, что любое отличное от нуля комплексное число   z = x + i y   может быть записано в виде

z = r (cos φ + i sin φ) ,(5)

где   r  и φ — модуль и аргумент этого числа, соответственно, причем модуль удовлетворяет неравенству   r > 0 .

      Запись комплексного числа в форме (5) называют тригонометрической формой записи комплексного числа.

Формула Эйлера. Экспоненциальная форма записи комплексного числа

      В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера:

cos φ + i sin φ = e iφ .(6)

      Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число   z = x + i y   может быть записано в виде

где   r   и   φ   — модуль и аргумент этого числа, соответственно, причем модуль удовлетворяет неравенству   r > 0 .

      Запись комплексного числа в форме (7) называют экспоненциальной (показательной) формой записи комплексного числа.

      Из формулы (7) вытекают, в частности, следующие равенства:

а из формул (4) и (6) следует, что модуль комплексного числа

cos φ + i sin φ,

или, что то же самое, числа   iφ,   при любом значении   φ   равен 1.

Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме

      Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.

      Действительно, умножение и деление двух произвольных комплексных чисел  и  записанных в экспоненциальной форме, осуществляется по формулам

      Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.

      При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.

      Возведение комплексного числа   z = r e iφ в натуральную степень осуществляется по формуле

      Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.

Извлечение корня натуральной степени из комплексного числа

      Пусть — произвольное комплексное число, отличное от нуля.

      Корнем   n — ой степени из числа  z0 , где  называют такое комплексное число   z = r e iφ , которое является решением уравнения

      Для того, чтобы решить уравнение (8), перепишем его в виде

и заметим, что два комплексных числа, записанных в экспоненциальной форме, равны тогда и только тогда, когда их модули равны, а разность аргументов равна   2kπ ,   где   k   — произвольное целое число. По этой причине справедливы равенства

следствием которых являются равенства

(9)

      Из формул (9) вытекает, что уравнение (8) имеет   n   различных корней

(10)

где

причем на комплексной плоскости концы радиус-векторов   zk   при   k = 0 , … , n – 1   располагаются в вершинах правильного   n — угольника, вписанного в окружность радиуса  с центром в начале координат.

      Замечание. В случае   n = 2   уравнение (8) имеет два различных корня   z1   и   z2 , отличающихся знаком:

z2 = – z1 .

      Пример 1. Найти все корни уравнения

z3 = – 8i .

      Решение. Поскольку

то по формуле (10) получаем:

      Следовательно,

      Пример 2. Решить уравнение

z2 + 2z + 2 = 0 .

      Решение. Поскольку дискриминант этого квадратного уравнения отрицателен, то вещественных корней оно не имеет. Для того, чтобы найти комплексные корни, выделим, как и в вещественном случае, полный квадрат:

      Так как

то решения уравнения имеют вид

z1 = – 1 + i ,       z2 = – 1 – i .

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Урок 38. определение комплексного числа. действия с комплексными числами — Алгебра и начала математического анализа — 11 класс

Алгебра и начала математического анализа, 11 класс

Урок №38. Определение комплексного числа. Действия с комплексными числами.

Перечень вопросов, рассматриваемых в теме

1) понятие мнимой единицы;

2) определение комплексного числа;

3) действия с комплексными числами и действия над ними.

Глоссарий по теме

Определение. Комплексным числом называется выражение вида a + bi, где a и b — действительные числа.

Запись комплексного числа в виде a + bi называют алгебраической формой комплексного числа, где а – действительная часть, bi – мнимая часть, причем b – действительное число.

Два комплексных числа z = a + bi и = a – bi, отличающиеся лишь знаком мнимой части, называются сопряженными.

Определение. Суммой комплексных чисел z1 = a1 + b1i и z2 = a2 + b2i называется комплексное число z, действительная часть которого равна сумме действительных частей z1 и z2, а мнимая часть — сумме мнимых частей чисел z1 и z2, то есть z = (a1 + a2) + (b1 + b2) i.

Числа z1 и z2 называются слагаемыми.

Определение. Вычесть из комплексного числа z1 комплексное число z2, значит найти такое комплексное число z,

что z + z2 = z1.

Теорема. Разность комплексных чисел существует и притом единственная.

Определение. Произведением комплексных чисел z1=a1+ b1 i и z2=a2+b2 i называется комплексное число z, определяемое равенством:

z = (a1a2 – b1b2) + (a1b2 + a2b1) i.

Числа z1 и z2 называются сомножителями.

Определение. Разделить комплексное число z1 на комплексное число z2, значит найти такое комплексное число z, что z · z2 = z1.

Теорема. Частное комплексных чисел существует и единственно, если z2 ≠ 0 + 0i.

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Мнимые числа, которыми мы дополняем действительные числа, записываются в виде bi, где i – мнимая единица, причем i 2 = —1.

Исходя из этого, получим следующее определение комплексного числа.

Определение. Комплексным числом называется выражение вида a + bi, где a и b — действительные числа. При этом выполняются условия:

а) Два комплексных числа a1 + b1i и a2 + b2i равны тогда и только тогда, когда a1=a2, b1=b2.

б) Сложение комплексных чисел определяется правилом:

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2) i.

в) Умножение комплексных чисел определяется правилом:

(a1 + b1i) (a2 + b2i) = (a1a2 — b1b2) + (a1b2 — a2b1) i.

Запись комплексного числа в виде a + bi называют алгебраической формой комплексного числа, где а – действительная часть, bi – мнимая часть, причем b – действительное число.

Комплексное число a + bi считается равным нулю, если его действительная и мнимая части равны нулю: a = b = 0

Комплексное число a + bi при b = 0 считается совпадающим с действительным числом a: a + 0i = a.

Комплексное число a + bi при a = 0 называется чисто мнимым и обозначается bi: 0 + bi = bi.

Два комплексных числа z = a + bi и = a – bi, отличающиеся лишь знаком мнимой части, называются сопряженными.

Над комплексными числами в алгебраической форме можно выполнять следующие действия.

1) Сложение.

Определение. Суммой комплексных чисел z1 = a1 + b1 i и z2 = a2 + b2i называется комплексное число z, действительная часть которого равна сумме действительных частей z1 и z2, а мнимая часть — сумме мнимых частей чисел z1 и z2, то есть z = (a1 + a2) + (b1 + b2) i.

Числа z1 и z2 называются слагаемыми.

Сложение комплексных чисел обладает следующими свойствами:

1º. Коммутативность: z1 + z2 = z2 + z1.

2º. Ассоциативность: (z1 + z2) + z3 = z1 + (z2 + z3).

3º. Комплексное число – a – bi называется противоположным комплексному числу z = a + bi. Комплексное число, противоположное комплексному числу z, обозначается -z. Сумма комплексных чисел z и -z равна нулю: z + (-z) = 0

Пример 1. Выполните сложение (3 – i) + (-1 + 2i).

(3 – i) + (-1 + 2i) = (3 + (-1)) + (-1 + 2) i = 2 + 1i.

2) Вычитание.

Определение. Вычесть из комплексного числа z1 комплексное число z2, значит найти такое комплексное число z, что z + z2 =z1.

Теорема. Разность комплексных чисел существует и притом единственная.

Пример 2. Выполните вычитание (4 – 2i) — (-3 + 2i).

(4 – 2i) — (-3 + 2i) = (4 — (-3)) + (-2 — 2) i = 7 – 4i.

3) Умножение.

Определение. Произведением комплексных чисел z1=a1+ b1 i и z2=a2+b2i называется комплексное число z, определяемое равенством:

z = (a1 a2 – b1b2) + (a1b2 + a2b1) i.

Числа z1 и z2 называются сомножителями.

Умножение комплексных чисел обладает следующими свойствами:

1º. Коммутативность: z1z2 = z2 z1.

2º. Ассоциативность: (z1z2)z3 = z1 (z2z3)

3º. Дистрибутивность умножения относительно сложения:

(z1 + z2) z3 = z1z3 + z2z3.

4º. z · = (a + bi) (a – bi) = a2 + b2 — действительное число.

На практике умножение комплексных чисел производят по правилу умножения суммы на сумму и выделения действительной и мнимой части.

В следующем примере рассмотрим умножение комплексных чисел двумя способами: по правилу и умножением суммы на сумму.

Пример 3. Выполните умножение (2 + 3i) (5 – 7i).

1 способ. (2 + 3i) (5 – 7i) = (2⋅ 5 – 3⋅ (- 7)) + (2⋅ (- 7) + 3⋅ 5)i =

= (10 + 21) + (- 14 + 15)i = 31 + i.

2 способ. (2 + 3i) (5 – 7i) = 2⋅ 5 + 2⋅ (- 7i) + 3i⋅ 5 + 3i⋅ (- 7i) =

= 10 – 14i + 15i + 21 = 31 + i.

4) Деление.

Определение. Разделить комплексное число z1 на комплексное число z2, значит найти такое комплексное число z, что z · z2 = z1.

Теорема. Частное комплексных чисел существует и единственно, если z2 ≠ 0 + 0i.

На практике частное комплексных чисел находят путем умножения числителя и знаменателя на число, сопряженное знаменателю.

Пусть z1 = a1 + b1i, z2 = a2 + b2i, тогда

В следующем примере выполним деление по формуле и правилу умножения на число, сопряженное знаменателю.

Пример 4. Найти частное

1 способ.

2 способ.

5) Возведение в целую положительную степень.

а) Степени мнимой единицы.

Пользуясь равенством i2 = -1, легко определить любую целую положительную степень мнимой единицы. Имеем:

i3 = i2 i = -i,

i4 = i2 i2 = 1,

i5 = i4 i = i,

i6 = i4 i2 = -1,

i7 = i5 i2 = -i,

i8 = i6 i2 = 1 и т. д.

Это показывает, что значения степени in, где n – целое положительное число, периодически повторяется при увеличении показателя на 4 .

Поэтому, чтобы возвести число i в целую положительную степень, надо показатель степени разделить на 4 и возвести i в степень, показатель которой равен остатку от деления.

Пример 5. Вычислите: (i 36 + i 17) · i 23.

i 36 = (i 4) 9 = 1 9 = 1,

i 17 = i 4⋅ 4+1 = (i 4)4⋅ i = 1 · i = i.

i 23 = i 4⋅ 5+3 = (i 4)5⋅ i3 = 1 · i3 = — i.

(i 36 + i 17) · i 23 = (1 + i) (- i) = — i + 1= 1 – i.

б) Возведение комплексного числа в целую положительную степень производится по правилу возведения двучлена в соответствующую степень, так как оно представляет собой частный случай умножения одинаковых комплексных сомножителей.

Пример 6. Вычислите: (4 + 2i) 3

(4 + 2i) 3 = 4 3 + 3⋅ 42⋅ 2i + 3⋅ 4⋅ (2i)2 + (2i)3 = 64 + 96i – 48 – 8i = 16 + 88i.

Стоит отметить. что с помощью комплексных чисел можно решать квадратные уравнения, у которых отрицательный дискриминант.

Рассмотрим решение квадратных уравнений, дискриминант которых отрицателен.

Пример 7. Решите уравнения:

а) x2 – 6x + 13 = 0;    б) 9x2 + 12x + 29 = 0.

Решение. а) Найдем дискриминант по формуле
D = b2 – 4ac.

Так как a = 1, b = – 6, c = 13, то 
D = (– 6)2 – 4×1×13 = 36 – 52 = – 16;

Корни уравнения находим по формулам

б) Здесь a = 9, b = 12, c = 29. Следовательно, 
D = b2 – 4ac =122 – 4×9×29 = 144 – 1044 = – 900,

Находим корни уравнения:

Мы видим, что если дискриминант квадратного уравнения отрицателен, то квадратное уравнение имеет два сопряженных комплексных корня.

Разбор решения заданий тренировочного модуля

№1. Тип задания: единичный выбор

Вычислите сумму (2 + 3i)+ (5 – 7i).

  1. 7 +4i
  2. 7 — 4i
  3. 6 — 3i
  4. 6 + 3i

Решение: 2 + 3i + 5 — 7i = (2 + 5) + (3 — 7)i = 7 — 4i.

Можем сделать вывод, что верный ответ

2. 7 — 4i.

№2. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.

Чему будет равно частное: (5 + 3i):(1 — 2i)=______

Решение:

Ответ: -0.2 + 2.6i

Комплексные числа и операции с ними

Содержание

Обнаружили ошибку? Выделите ее мышью и нажмите

Введение

Известно, что область определения некоторых функций на множестве вещественных чисел ограничена. Например функция определена для , аналогично можно вспомнить, что функция определена для , а функция определена для .

Однако, ограниченная область определения функций на множестве вещественных чисел не означает, что , или не имеют смысла. Ограниченная область определения функций на множестве вещественных чисел говорит лишь о том, что не может быть представлено вещественным числом. Действительно, среди вещественных чисел не найти такого числа , квадрат которого был бы равен .

При решении квадратных уравнений часто возникает ситуация, когда дискриминант отрицательный. В этом случае это означает что парабола не пересекает прямую абсцисс ни в одной точке. Другими словами, корни квадратного уравнения не существуют среди вещественных значений и их также надо искать за пределами вещественных чисел.

Все бесконечное множество вещественных чисел можно представить в виде одной числовой прямой (смотри рисунок 1), на которой мы можем откладывать рациональные и иррациональные вещественные числа. Но на этой прямой нет числа , значит его надо искать вне числовой прямой. Таким образом мы должны расширить множество вещественных чисел до множества в котором значения , или уже не бессмысленны, а являются такими же обычными числами в этом расширенном множестве, как на множестве вещественных чисел.

Комплексная плоскость и мнимая единица

Естественным расширением числовой прямой является плоскость, которую называют комплексной плоскостью. Числовая прямая вещественных чисел и ее расширение до комплексной плоскости показано на рисунке 1. Любая точка на комплексной плоскости определяет одно комплексное число. Например на рисунке 1 показано число .

Рисунок 1. Расширение множества вещественных чисел до множества комплексных числел

Значение вещественного числа однозначно определяет его позицию на числовой прямой, однако для определения позиции на плоскости одного числа недостаточно.

Для «навигации» по комплексной плоскости вводятся две прямые и , которые пересекаются в начале координат. Прямая это числовая прямая, называемая реальной осью, на которой лежат все вещественные числа. Прямая называется мнимой осью и она перпендикулярна реальной оси . Оси и делят комплексную плоскость на четверти, как это показано на рисунке 1.

Любая точка комплексной плоскости задается двумя координатами и по осям и соответственно. При этом само комплексное число можно записать как , где называется реальной частью и задает координату точки комплексной плоскости на вещественной прямой , а называется мнимой частью и задает координату точки комплексной плоскости на мнимой оси .

Для того чтобы отделить одну координату от другой (реальную и мнимую части) вводят число , называемое мнимой единицей. Это так раз то число, которого не существует на множестве действительных чисел. Оно обладает особым свойством: . Тогда комплексное число может не только перемещаться по вещественной прямой вправо и влево, но и двигаться по комплексной плоскости потому что мы добавили ему слагаемое с мнимой единицей .

Мнимую единицу в математической литературе принято обозначать как , но в технике буква уже закреплена за обозначением электрического тока, поэтому чтобы избежать путаницы мы будем обозначать мнимую единицу буквой .

Если и , тогда число является действительным и располагается на реальной оси .

Если и , тогда число является чисто мнимым и располагается на мнимой оси .

Если и , тогда число располагается в одной из четвертей комплексной плоскости.

Модуль и фаза комплексного числа

Представление комплексного числа как называют алгебраической формой записи. Если из начала координат комплексной плоскости к точке восстановить вектор (смотри рисунок 1), то можно вычислить длину этого вектора как

(1)

 — неотрицательное вещественное число характеризующее длину вектора и называется модулем комплексного числа. При этом сам вектор комплексного числа повернут относительно реальной оси на некоторый угол , называемый фазой. Фаза комплексного числа может быть положительной или отрицательной, в зависимости от того в каком направлении относительно оси отсчитывать угол. Если угол поворота вектора на комплексной плоскости отсчитывать против часовой стрелки (как это показано на рисунке 1), то фаза будет принимать положительные значения, а если по часовой — то отрицательные.

Связь реальной и мнимой частей комплексного числа с его амплитудой и фазой представлено следующим выражением:

(2)

Тогда комплексное число можно представить в тригонометрической форме:

(3)

Связь угла поворота вектора комплексного числа с реальной и мнимой частью комплексного числа, представленного в алгебраической форме:

(4)

тогда

(5)

где учитывает четверть комплексной плоскости в которой расположено число :

(6)

Необходимость поправки возникает из-за того, что функция периодическая функция с периодом рад. В результате возвращает корректные значения только в интервале . Таким образом функция арктангенса не отличает четверть I от четверти III (в обоих случаях отношение положительное), а также не отличает четверть II от четверти IV (отношение отрицательное).

На рисунке 2 показаны значения параметра , в зависимости от того в какой четверти комплексной плоскости расположено число.

Рисунок 2. Значение поправки фазы комплексного числа в зависимости от расположения на комплексной плоскости.

На рисунке 2а исходное комплексное число расположено в первой четверти комплексной плоскости и .

Тогда и значение фазы комплексного числа равно:

(7)

Рассмотрим случай, когда комплексное число расположено во второй четверти комплексной плоскости (рисунок 2б), т.е. и . В этом случае и угол также будет отрицательным (красная пунктирная линия). Тогда для того, чтобы получить корректное значение фазы необходимо ввести поправку рад:

(8)

Пусть комплексное число расположено в третьей четверти комплексной плоскости (рисунок 2в), т.е. и . В этом случае и угол будет положительным (красная пунктирная линия). Тогда для того, чтобы получить корректное значение фазы необходимо ввести поправку рад:

(9)

Если расположено в четвертой четверти комплексной плоскости (рисунок 2г), т.е. и , то в этом случае и угол будет отрицательным и равным фазе комплексного числа без поправок ( рад):

(10)

Функция которая позволяет получить фазу комплексного числа c учетом четверти комплексной плоскости в которой расположено комплексное число называется функция арктангенс-2 и обозначается .

Функция арктангенс-2 присутствует во всех математических приложениях и может быть использована для расчета верного угла поворота вектора комплексного числа.

Показательная форма комплексного числа. Формула Эйлера

Мы уже рассмотрели алгебраическую и тригонометрическую формы записи комплексного числа. Помимо алгебраической и тригонометрической формы существует также показательная форма комплексного числа:

(11)

связанная с тригонометрической формой формулой Эйлера:

(12)

Cоотношение (12) легко доказать, если произвести разложение экспоненты в ряд Тейлора:

(13)

Представим ряд (13) в виде суммы четных и нечетных членов последовательности:

(14)

Рассмотрим более подробно мнимую единицу в четной и нечетной степенях.

Из определения мнимой единицы можно сделать вывод, что , тогда , в свою очередь .

Таким образом, можно сделать вывод что .

Построим аналогичным образом соотношение для нечетных степеней: , тогда , в свою очередь и окончательно можно записать: . Тогда (14) можно представить как:

(15)

В выражении (15) первая сумма по четным степеням дает разложение в ряд Тейлора функции , а вторая сумма по нечетным степеням дает разложение в ряд Тейлора функции . Таким образом, получено доказательство справедливости формулы Эйлера (12).

Необходимо отметить, что формула Эйлера является одной из важнейших в теории функций комплексного переменного. Так например при помощи формулы Эйлера можно связать математические константы и с использованием мнимой единицы :

(16)

Операции над комплексными числами. Комплексно-сопряженные числа

В данном параграфе мы кратко рассмотрим операции над комплексными числами. Сумма двух комплексных чисел и представляет собой комплексное число :

(17)

При сложении реальные и мнимые части комплексного числа также складываются. На комплексной плоскости операцию сложения можно реализовать как сложение векторов комплексных чисел по правилу параллелограмма (рисунок 3а).

Рисунок 3. Операции над комплексными числами

Разность двух комплексных чисел и представляет собой комплексное число

(18)

При вычитании реальные и мнимые части комплексного числа также вычитаются. На комплексной плоскости операцию вычитания можно реализовать как вычитание векторов по правилу параллелограмма (рисунок 3б). На первом шаге из вектора формируется вектор (обозначенный пунктирной линией на рисунке 3б), после чего вектор складывается с вектором по правилу параллелограмма.

Для того чтобы получить формулу для умножения комплексных числен необходимо перемножить два комплексных числа по правилу умножения многочленов:

(19)

Умножение комплексных проще выполнять если числа представлены в показательной форме:

(20)

При перемножении в показательной форме модули комплексных чисел перемножаются а фазы складываются. Операция произведения комплексных чисел показано на рисунке 3в.

Введем понятие комплексно-сопряженного числа. Число является комплексно-сопряженным числу .

Комплексно-сопряженные числа отличаются знаком перед мнимой частью.

Графически комплексно-сопряженные числа показаны на рисунке 3г.

При этом можно заметить, что модули комплексно-сопряженных чисел равны , а фазы имеют противоположные знаки.

Произведение комплексно-сопряженных чисел

(21)

представляет собой действительное число равное квадрату модуля этих чисел.

Из элементарных операций нам осталось рассмотреть лишь деление комплексных чисел. Рассмотрим результат деления комплексных чисел в показательной форме:

(22)

Таким образом, при делении комплексных чисел модуль частного равен частному модулей исходных чисел, а фаза равна разности фаз исходных чисел.

При этом необходимо потребовать, чтобы был не равен нулю, иначе у нас появится деление на ноль при расчете модуля частного.

Рассмотрим теперь деление комплексных чисел в алгебраической форме:

(23)

Домножим и числитель и знаменатель на число, комплексно-сопряженное знаменателю:

(24)

Выводы

В данной статье введено понятие комплексного числа и рассмотрены основные его свойства. Введено понятие мнимой единицы.

Подробно рассмотрена комплексная плоскость и представление комплексных чисел в алгебраической, тригонометрической и показательной формах. Введены понятия модуля и фазы комплексного числа.

Рассмотрены основные арифметические операции над комплексными числами.

Показано как выполнять операции сложения, вычитания в алгебраической форме, введено понятие комплексно-сопряженных чисел, а также операции умножения и деления в показательной и алгебраической формах.

Информация была полезна? Поделитесь с друзьями!

Список литературы

[1] Пантелеев А.В., Якимова А.С. Теория функций комплексного переменного и операционное исчисление в примерах и задачах. М: Высшая школа, 2011.


[2] Дубровин В.Т. Теория функций комплексного переменного. Теория и практика Казань: Казанский государственный университет, 2010. [PDF]

Последнее изменение страницы: 19.09.2020 (16:33:34)

Откуда есть пошло комплексное число / Хабр

В современной математике комплексное число является одним из фундаментальнейших понятий, находящее применение и в «чистой науке», и в прикладных областях. Понятно, что так было далеко не всегда. В далекие времена, когда даже обычные отрицательные числа казались странным и сомнительным нововведением, необходимость расширения на них операции извлечения квадратного корня была вовсе неочевидной. Тем не менее, в середине XVI века математик Рафаэль Бомбелли вводит комплексные (в данном случае точнее сказать, мнимые) числа в оборот. Собственно, предлагаю посмотреть, в чем была суть затруднений, доведших в итоге солидного итальянца до подобных крайностей.

Существует распространенное заблуждение, что комплексные числа потребовались для того, чтобы решать квадратные уравнения. На самом деле, это совершенно не так: задача поиска корней квадратного уравнения никоим образом введение комплексных чисел не мотивирует. Вот совершенно.

Давайте убедимся сами. Всякое квадратное уравнение можно представить в виде:
.
Геометрически, это означает, что мы хотим найти точки пресечения некоторой прямой и параболы
Я тут даже картинку сделал, для иллюстрации.


Как нам всем хорошо известно из школы, корни квадратного уравнения (в указанных выше обозначениях) находятся по следующей формуле:

Оказываются возможными 3 варианта:
1. Подкоренное выражение положительно.
2. Подкоренное выражение равно нулю.
3. Подкоренное выражение отрицательно.

В первом случае имеются 2 различных корня, во втором два совпадающих, в третьем уравнение «не решается». Все эти случаи имеют вполне наглядную геометрическую интерпретацию:
1. Прямая пересекает параболу (синяя прямая на рисунке).
2. Прямая касается параболы.
3. Прямая не имеет с параболой общих точек (сиреневая прямая на рисунке).

Ситуация проста, логична, непротиворечива. Пытаться извлекать квадратный корень из отрицательного числа нет совершенно никаких оснований. Никто и не пытался.

Обстановка существенно изменилась, когда пытливая математическая мысль добралась до кубических уравнений. Чуть менее очевидно, используя некоторую несложную подстановку, всякое кубическое уравнение можно свести к виду: . С геометрической точки зрения ситуация похожа на предыдущую: мы ищем точку пересечения прямой и кубической параболы.
Взгляните на картинку:

Существенное отличие от случая квадратного уравнения в том, что какую бы прямую мы не взяли, она всегда пересечет параболу. Т.е., уже из чисто геометрических соображений, кубическое уравнение всегда имеет хотя бы одно решение.
Найти его можно воспользовавшись формулой Кардано:

где
.
Немного громоздко, но пока, вроде бы, все в порядке. Или нет?

Вообще, формула Кардано — это яркий пример «принципа Арнольда» в действии. И что характерно, Кардано никогда на авторство формулы не претендовал.

Вернемся, однако, к нашим баранам. Формула замечательная, без преувеличение великое достижение математики начала-середины XVI века. Но есть у нее один нюанс.
Возьмем классический пример, который рассматривал еще Бомбелли:
.
Внезапно,
,
и, соответственно,
.
Приплыли. А формулу жалко, а формула-то хорошая. Тупик. При том, что решение у уравнения, безусловно, есть.

Идея Рафаэля Бомбелли заключалась в следующем: давайте прикинемся шлангом и сделаем вид, что корень из отрицательного — это какое-то число. Мы, конечно, знаем, что таких чисел нет, но тем не менее, давайте представим, что оно существует и его, как обычные числа, можно складывать с другими, умножать, возводить в степень и т.п.

Используя подобный подход, Бомбелли установил, в частности, что
,
и
.
Давайте проверим:
.
Заметьте, в выкладках никаких предположений о свойствах квадратных корней из отрицательных чисел не предполагалось, кроме упомянутого выше допущения, что они ведут себя как «обычные» числа.

В сумме получаем . Что вполне себе правильный ответ, который элементарно проверяется прямой подстановкой. Это был настоящий прорыв. Прорыв в комплексную плоскость.

Тем не менее, подобные выкладки выглядят как некоторая магия, математический фокус. Отношение к ним, как к некоему трюку, сохранялось среди математиков еще очень долго. Собственно, придуманное Рене Декартом для корней из отрицательных название «мнимые числа» вполне отражает отношение математиков тех времен к таким развлечениям.

Однако, время шло, «трюк» применялся с неизменным успехом, авторитет «мнимых чисел» в глазах математического общества рос, сдерживаемый, однако, неудобством их использования. Лишь получение Леонардом Эйлером (кстати, это именно он ввел ныне общеупотребительное обозначение для мнимой единицы) знаменитой формулы

открыло комплексным числам дорогу в самые различные области математики и ее приложений. Но это уже совсем другая история.

c ++ — Как отформатировать вывод комплексных чисел с отрицательными или нулевыми значениями

Переполнение стека
  1. Около
  2. Продукты
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
  5. Реклама Обратитесь к разработчикам и технологам со всего мира
  6. О компании

Загрузка…

  1. Авторизоваться зарегистрироваться
  2. текущая коммуна

.

Комплексные числа


Комплексный номер

Комплексное число — это комбинация действительного числа
и мнимого числа

Реальные числа — это числа вроде:

1 12,38 -0,8625 3/4 √2 1998

Практически любое число, которое вы можете придумать, является действительным числом!

Мнимые числа при возведении в квадрат дают отрицательный результат .

Обычно этого не происходит, потому что:

Но только представьте, что такие числа существуют, потому что мы хотим их.

Давайте поговорим еще о мнимых числах …

«Единичное» мнимое число (например, 1 для действительных чисел) — это i, что является квадратным корнем из −1

.

Потому что, возводя i в квадрат, мы получаем −1

я 2 = -1

Примеры мнимых чисел:

3i 1.04i −2,8i 3i / 4 (√2) я 1998i

И мы оставляем там маленькое «i», чтобы напомнить нам, что нам нужно умножить на √ − 1

Комплексные числа

Когда мы объединяем действительное число и мнимое число, мы получаем комплексное число :

Примеры:

1 + я 39 + 3i 0,8 — 2,2i −2 + πi √2 + я / 2

Может ли число быть комбинацией двух чисел?

Можем ли мы составить одно число из двух других чисел? Мы можем точно!

Мы постоянно делаем это с дробями.Дробь 3 / 8 — это число, состоящее из 3 и 8. Мы знаем, что это означает «3 из 8 равных частей».

Ну, комплексное число — это всего лишь , два числа, сложенные вместе (действительное и мнимое число).

Любая часть может быть нулевой

Итак, комплексное число имеет действительную и мнимую части.

Но любая часть может быть 0 , поэтому все действительные числа и мнимые числа также являются комплексными числами.

Комплексный номер Реальная часть Воображаемая часть
3 + 2i 3 2
5 5 0 Чисто Настоящее
−6i 0 −6 Чисто воображаемое

Сложно?

Сложный не означает сложный.

Это означает, что два типа чисел, действительные и мнимые, вместе образуют комплекс , точно так же, как комплекс зданий (здания, соединенные вместе).

A Визуальное объяснение

Вы знаете, как проходит числовая линия слева направо ?

Что ж, пусть воображаемые числа идут вверх-вниз :

И получаем сложный самолет

Комплексное число теперь может отображаться как точка:


Комплексный номер 3 + 4 и

Добавление

Чтобы сложить два комплексных числа, складываем каждую часть отдельно:

(a + b i ) + (c + d i ) = (a + c) + (b + d) i

Пример: сложите комплексные числа 3 + 2 i и 1 + 7 i

  • сложите действительные числа и
  • сложите мнимые числа:

(3 + 2i) + (1 + 7i)
= 3 + 1 + (2 + 7) i
= 4 + 9i

Попробуем еще:

Пример: сложите комплексные числа 3 + 5 i и 4 — 3 i

(3 + 5 i ) + (4 — 3 i )
= 3 + 4 + (5 — 3) i
= 7 + 2 i

В комплексной плоскости это:

Умножение

Для умножения комплексных чисел:

Каждая часть первого комплексного числа умножается на
каждая часть второго комплексного числа

Просто используйте «FOIL», что означает « F irsts, O uters, I nners, L assts» (см. Биномиальное умножение для более подробной информации):

  • Первые: a × c
  • Внешний: a × d i
  • Внутренние: b i × c
  • Длина: b i × d i

(a + b i ) (c + d i ) = ac + ad i + bc i + bd i 2

Как это:

Пример: (3 + 2i) (1 + 7i)

(3 + 2i) (1 + 7i) = 3 × 1 + 3 × 7i + 2i × 1 + 2i × 7i

= 3 + 21i + 2i + 14i 2

= 3 + 21i + 2i — 14 (потому что i 2 = −1)

= −11 + 23i

А это:

Пример: (1 + i) 2

(1 + я) (1 + я) = 1 × 1 + 1 × я + 1 × я + я 2

= 1 + 2i — 1 (поскольку i 2 = −1)

= 0 + 2i

Но есть способ быстрее!

Используйте это правило:

(a + b i ) (c + d i ) = (ac − bd) + (ad + bc) i

Пример: (3 + 2i) (1 + 7i) = (3 × 1-2 × 7) + (3 × 7 + 2 × 1) i = −11 + 23i

Почему это правило работает?

Это просто метод «ФОЛЬГА» после небольшой работы:

(a + b i ) (c + d i ) = ac + ad i + bc i + bd i 2 FOIL method

= ac + ad i + bc i — bd (потому что i 2 = −1)

= (ac — bd) + (ad + bc) i (собирает похожие термины)

И вот у нас есть шаблон (ac — bd) + (ad + bc) i .

Это правило, безусловно, быстрее, но если вы его забудете, просто запомните метод FOIL.

Давайте попробуем i 2

Ради интереса воспользуемся методом вычисления i 2

Пример: i 2

Мы можем записать i с действительной и мнимой частью как 0 + i

i 2 = (0 + i) 2 = (0 + i) (0 + i)

= (0 × 0 — 1 × 1) + (0 × 1 + 1 × 0) и

= -1 + 0 и

= −1

И это хорошо согласуется с определением, что i 2 = −1

Так что все прекрасно работает!

Узнайте больше в разделе «Умножение комплексных чисел».

Конъюгаты

Нам нужно будет узнать о конъюгатах через минуту!

Сопряжение — это где мы меняем знак в середине вот так:

Сопряжение часто пишется с чертой над ним:

Пример:

5 — 3 i = 5 + 3 i

Деление

Конъюгат используется для облегчения сложного деления.

Уловка состоит в том, чтобы умножить верхний и нижний на , сопряженный с нижним .

Пример: Сделайте это Подразделение:

2 + 3 i 4-5 i

Умножить верхнюю и нижнюю на конъюгат 4-5 i :

2 + 3 i 4-5 i × 4 + 5 i 4 + 5 i = 8 + 10 i + 12 i + 15 i 2 16 + 20 i –20 i –25 i 2

Теперь запомните, что i 2 = −1, поэтому:

= 8 + 10 i + 12 i -15 16 + 20 i -20 i + 25

Добавить условия «Нравится» (и обратите внимание, как внизу 20 i — 20 i отменяются!):

= −7 + 22 i 41

Наконец, мы должны вернуть ответ в форму a + b i :

= −7 41 + 22 41 i

СДЕЛАНО!

Да, нужно сделать небольшой расчет.Но это можно сделать .

Умножение на конъюгат

Но есть способ быстрее.

В предыдущем примере было интересно то, что произошло внизу:

(4-5 i ) (4 + 5 i ) = 16 + 20 i -20 i -25 i 2

Средние условия (20 i — 20 i ) аннулируются! Также i 2 = −1, поэтому получаем:

(4-5 i ) (4 + 5 i ) = 4 2 + 5 2

Это действительно довольно простой результат.Общее правило:

(a + b i ) (a — b i ) = a 2 + b 2

Мы можем использовать это, чтобы сэкономить время при делении, например:

Пример: попробуем еще раз

2 + 3 i 4-5 i

Умножить верхнюю и нижнюю на конъюгат 4-5 i :

2 + 3 i 4-5 i × 4 + 5 i 4 + 5 i = 8 + 10 i + 12 i + 15 я 2 16 + 25

= −7 + 22 i 41

И затем обратно в форму a + b i :

= −7 41 + 22 41 i

СДЕЛАНО!

Обозначение

Мы часто используем z для комплексного числа.И Re () для действительной части и Im () для мнимой части, например:

.

Комплексные и рациональные числа · Язык Julia

Julia включает предопределенные типы как для комплексных, так и для рациональных чисел, а также поддерживает все стандартные математические операции и элементарные функции над ними. Преобразование и продвижение определены таким образом, что операции с любой комбинацией предопределенных числовых типов, будь то примитивные или составные, ведут себя должным образом.

Глобальная константа im связана с комплексным числом i , представляющим главный квадратный корень из -1.(Использование математиков i или инженеров j для этой глобальной константы было отклонено, поскольку они являются такими популярными именами индексных переменных.) Поскольку Julia позволяет сопоставить числовые литералы с идентификаторами в качестве коэффициентов, этой привязки достаточно для обеспечения удобного синтаксиса для комплексные числа, аналогичные традиционной математической записи:

  julia> 1 + 2im
1 + 2im  

Вы можете выполнять все стандартные арифметические операции с комплексными числами:

  julia> (1 + 2im) * (2 - 3im)
8 + 1им

Юлия> (1 + 2im) / (1-2im)
-0.2
-2 + 0im

Юлия> 1 + 3 / 4im
1.0 - 0.75im  

Обратите внимание, что 3 / 4im == 3 / (4 * im) == - (3/4 * im) , поскольку буквальный коэффициент связывает сильнее, чем деление.

Предоставляются стандартные функции для управления комплексными значениями:

  julia> z = 1 + 2im
1 + 2им

julia> real (1 + 2im) # действительная часть z
1

julia> imag (1 + 2im) # мнимая часть z
2

julia> con (1 + 2im) # комплексное сопряжение z
1-2 мес.

julia> abs (1 + 2im) # абсолютное значение z
2.23606797749979

julia> abs2 (1 + 2im) # квадрат абсолютного значения
5

julia> angle (1 + 2im) # фазовый угол в радианах
1.1071487177940904  

Как обычно, абсолютное значение ( abs ) комплексного числа — это его расстояние от нуля. abs2 дает квадрат абсолютного значения и особенно используется для комплексных чисел, поскольку позволяет избежать извлечения квадратного корня. angle возвращает фазовый угол в радианах (также известный как аргумент или функция arg ).Полная гамма других элементарных функций также определена для комплексных чисел:

  julia> sqrt (1im)
0,7071067811865476 + 0,7071067811865475im

Юлия> sqrt (1 + 2im)
1,272019649514069 + 0,7861513777574233im

Юлия> соз (1 + 2им)
2.0327230070196656 - 3.0518977991518im

Юлия> ехр (1 + 2им)
-1.1312043837568135 + 2.4717266720048188im

Юлия> Синх (1 + 2им)
-0.4890562590412937 + 1.4031192506220405im  

Обратите внимание, что математические функции обычно возвращают действительные значения при применении к действительным числам и комплексные значения при применении к комплексным числам.Например, sqrt ведет себя по-разному при применении к -1 по сравнению с -1 + 0im , хотя -1 == -1 + 0im :

  julia> sqrt (-1)
ОШИБКА: DomainError с -1.0:
sqrt вернет сложный результат только в том случае, если он вызван со сложным аргументом. Попробуйте sqrt (Complex (x)).
Трассировки стека:
[...]

Юлия> sqrt (-1 + 0im)
0.0 + 1.0im  

Буквальное числовое обозначение коэффициента не работает при построении

.

вещественных чисел — определение, свойства, набор действительных чисел

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar
            • RS Aggarwal
              • RS Aggarwal Решения класса 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma Class 8
              • Решения RD Sharma Class 9
              • Решения RD Sharma Class 10
              • Решения RD Sharma Class 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • Числа
              • Число чисел Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Деление фракций
            • Microology
            • 0003000
          • FORMULAS
            • Математические формулы
            • Алгебраные формулы
            • Тригонометрические формулы
            • Геометрические формулы
          • КАЛЬКУЛЯТОРЫ
            • Математические калькуляторы
            • 0003000
            • 000 CALCULATORS
            • 000
            • 000 Калькуляторы по химии 900 Образцы документов для класса 6
            • Образцы документов CBSE для класса 7
            • Образцы документов CBSE для класса 8
            • Образцы документов CBSE для класса 9
            • Образцы документов CBSE для класса 10
            • Образцы документов CBSE для класса 1 1
            • Образцы документов CBSE для класса 12
          • Вопросники предыдущего года CBSE
            • Вопросники предыдущего года CBSE, класс 10
            • Вопросники предыдущего года CBSE, класс 12
          • HC Verma Solutions
            • HC Verma Solutions Класс 11 Физика
            • HC Verma Solutions Класс 12 Физика
          • Решения Лакмира Сингха
            • Решения Лахмира Сингха класса 9
            • Решения Лахмира Сингха класса 10
            • Решения Лакмира Сингха класса 8
          • 9000 Класс
          9000BSE 9000 Примечания3 2 6 Примечания CBSE
        • Примечания CBSE класса 7
        • Примечания
        • Примечания CBSE класса 8
        • Примечания CBSE класса 9
        • Примечания CBSE класса 10
        • Примечания CBSE класса 11
        • Класс 12 Примечания CBSE
      • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
      • CBSE Примечания к редакции класса 10
      • CBSE Примечания к редакции класса 11
      • Примечания к редакции класса 12 CBSE
    • Дополнительные вопросы CBSE
      • Дополнительные вопросы по математике класса 8 CBSE
      • Дополнительные вопросы по науке 8 класса CBSE
      • Дополнительные вопросы по математике класса 9 CBSE
      • Дополнительные вопросы по науке
      • CBSE Class 9 Вопросы
      • CBSE Class 10 Дополнительные вопросы по математике
      • CBSE Class 10 Science Extra questions
    • CBSE Class
      • Class 3
      • Class 4
      • Class 5
      • Class 6
      • Class 7
      • Class 8 Класс 9
      • Класс 10
      • Класс 11
      • Класс 12
    • Учебные решения
  • Решения NCERT
    • Решения NCERT для класса 11
      • Решения NCERT для класса 11 по физике
      • Решения NCERT для класса 11 Химия
      • Решения NCERT для биологии класса 11
      • Решение NCERT s Для класса 11 по математике
      • NCERT Solutions Class 11 Accountancy
      • NCERT Solutions Class 11 Business Studies
      • NCERT Solutions Class 11 Economics
      • NCERT Solutions Class 11 Statistics
      • NCERT Solutions Class 11 Commerce
    • NCERT Solutions for Class 12
      • Решения NCERT для физики класса 12
      • Решения NCERT для химии класса 12
      • Решения NCERT для биологии класса 12
      • Решения NCERT для математики класса 12
      • Решения NCERT, класс 12, бухгалтерия
      • Решения NCERT, класс 12, бизнес-исследования
      • NCERT Solutions Class 12 Economics
      • NCERT Solutions Class 12 Accountancy Part 1
      • NCERT Solutions Class 12 Accountancy Part 2
      • NCERT Solutions Class 12 Micro-Economics
      • NCERT Solutions Class 12 Commerce
      • NCERT Solutions Class 12 Macro-Economics
    • NCERT Solut Ионы Для класса 4
      • Решения NCERT для математики класса 4
      • Решения NCERT для класса 4 EVS
    • Решения NCERT для класса 5
      • Решения NCERT для математики класса 5
      • Решения NCERT для класса 5 EVS
    • Решения NCERT для класса 6
      • Решения NCERT для математики класса 6
      • Решения NCERT для науки класса 6
      • Решения NCERT для класса 6 по социальным наукам
      • Решения NCERT для класса 6 Английский язык
    • Решения NCERT для класса 7
      • Решения NCERT для математики класса 7
      • Решения NCERT для науки класса 7
      • Решения NCERT для социальных наук класса 7
      • Решения NCERT для класса 7 Английский язык
    • Решения NCERT для класса 8
      • Решения NCERT для математики класса 8
      • Решения NCERT для науки 8 класса
      • Решения NCERT для социальных наук 8 класса ce
      • Решения NCERT для класса 8 Английский
    • Решения NCERT для класса 9
      • Решения NCERT для класса 9 по социальным наукам
    • Решения NCERT для математики класса 9
      • Решения NCERT для математики класса 9 Глава 1
      • Решения NCERT для математики класса 9, глава 2
      • Решения NCERT
      • для математики класса 9, глава 3
      • Решения NCERT для математики класса 9, глава 4
      • Решения NCERT для математики класса 9, глава 5
      • Решения NCERT
      • для математики класса 9, глава 6
      • Решения NCERT для математики класса 9, глава 7
      • Решения NCERT
      • для математики класса 9, глава 8
      • Решения NCERT для математики класса 9, глава 9
      • Решения NCERT для математики класса 9, глава 10
      • Решения NCERT
      • для математики класса 9, глава 11
      • Решения
      • NCERT для математики класса 9 Глава 12
      • Решения NCERT
      • для математики класса 9 Глава 13
      • NCER Решения T для математики класса 9 Глава 14
      • Решения NCERT для математики класса 9 Глава 15
    • Решения NCERT для науки класса 9
      • Решения NCERT для науки класса 9 Глава 1
      • Решения NCERT для науки класса 9 Глава 2
      • Решения NCERT для науки класса 9 Глава 3
      • Решения NCERT для науки класса 9 Глава 4
      • Решения NCERT для науки класса 9 Глава 5
      • Решения NCERT для науки класса 9 Глава 6
      • Решения NCERT для науки класса 9 Глава 7
      • Решения NCERT для науки класса 9 Глава 8
      • Решения NCERT для науки класса 9 Глава 9
      • Решения NCERT для науки класса 9 Глава 10
      • Решения NCERT для науки класса 9 Глава 12
      • Решения NCERT для науки класса 9 Глава 11
      • Решения NCERT для науки класса 9 Глава 13
      • Решения NCERT
      • для науки класса 9 Глава 14
      • Решения NCERT для класса 9 по науке Глава 15
    • Решения NCERT для класса 10
      • Решения NCERT для класса 10 по социальным наукам
    • Решения NCERT для математики класса 10
      • Решения NCERT для математики класса 10 Глава 1
      • Решения NCERT для математики класса 10, глава 2
      • Решения NCERT для математики класса 10, глава 3
      • Решения NCERT для математики класса 10, глава 4
      • Решения NCERT для математики класса 10, глава 5
      • Решения NCERT для математики класса 10, глава 6
      • Решения NCERT для математики класса 10 Глава 7
      • Решения NCERT для математики класса 10 Глава 8
      • Решения NCERT для математики класса 10 Глава 9
      • Решения NCERT для математики класса 10 Глава 10
      • Решения NCERT для математики класса 10 Глава 11
      • Решения NCERT для математики класса 10 Глава 12
      • Решения NCERT для математики класса 10 Глава ter 13
      • Решения NCERT для математики класса 10 Глава 14
      • Решения NCERT для математики класса 10 Глава 15
    • Решения NCERT для науки класса 10
      • Решения NCERT для класса 10 науки Глава 1
      • Решения NCERT для класса 10 Наука, глава 2
      • Решения NCERT для класса 10, глава 3
      • Решения NCERT для класса 10, глава 4
      • Решения NCERT для класса 10, глава 5
      • Решения NCERT для класса 10, глава 6
      • Решения NCERT для класса 10 Наука, глава 7
      • Решения NCERT для класса 10, глава 8,
      • Решения NCERT для класса 10, глава 9
      • Решения NCERT для класса 10, глава 10
      • Решения NCERT для класса 10, глава 11
      • Решения NCERT для класса 10 Наука Глава 12
      • Решения NCERT для класса 10 Наука Глава 13
      • NCERT S Решения для класса 10 по науке Глава 14
      • Решения NCERT для класса 10 по науке Глава 15
      • Решения NCERT для класса 10 по науке Глава 16
    • Программа NCERT
    • NCERT
  • Commerce
    • Class 11 Commerce Syllabus
      • Учебный план класса 11
      • Учебный план бизнес-класса 11 класса
      • Учебный план экономического факультета 11
    • Учебный план по коммерции 12 класса
      • Учебный план класса 12
      • Учебный план бизнес-класса 12
      • Учебный план
      • Класс 12 Образцы документов для коммерции
        • Образцы документов для коммерции класса 11
        • Образцы документов для коммерции класса 12
      • TS Grewal Solutions
        • TS Grewal Solutions Class 12 Accountancy
        • TS Grewal Solutions Class 11 Accountancy
      • Отчет о движении денежных средств 9 0004
      • Что такое предпринимательство
      • Защита потребителей
      • Что такое основные средства
      • Что такое баланс
      • Что такое фискальный дефицит
      • Что такое акции
      • Разница между продажами и маркетингом
    03
  • Образцы документов ICSE
  • Вопросы ICSE
  • ML Aggarwal Solutions
    • ML Aggarwal Solutions Class 10 Maths
    • ML Aggarwal Solutions Class 9 Maths
    • ML Aggarwal Solutions Class 8 Maths
    • ML Aggarwal Solutions Class 7 Maths Решения Математика класса 6
  • Решения Селины
    • Решения Селины для класса 8
    • Решения Селины для класса 10
    • Решение Селины для класса 9
  • Решения Фрэнка
    • Решения Фрэнка для математики класса 10
    • Франк Решения для математики 9 класса
    9000 4
  • ICSE Class
    • ICSE Class 6
    • ICSE Class 7
    • ICSE Class 8
    • ICSE Class 9
    • ICSE Class 10
    • ISC Class 11
    • ISC Class 12
  • IC
    • 900 Экзамен по IAS
    • Экзамен по государственной службе
    • Программа UPSC
    • Бесплатная подготовка к IAS
    • Текущие события
    • Список статей IAS
    • Мок-тест IAS 2019
      • Мок-тест IAS 2019 1
      • Мок-тест IAS4
      2
    • Комиссия по государственным услугам
      • Экзамен KPSC KAS
      • Экзамен UPPSC PCS
      • Экзамен MPSC
      • Экзамен RPSC RAS ​​
      • TNPSC Group 1
      • APPSC Group 1
      • Экзамен BPSC
      • Экзамен WPSC
      • Экзамен JPSC
      • Экзамен GPSC
    • Вопросник UPSC 2019
      • Ответный ключ UPSC 2019
    • 900 10 Коучинг IAS
      • Коучинг IAS Бангалор
      • Коучинг IAS Дели
      • Коучинг IAS Ченнаи
      • Коучинг IAS Хайдарабад
      • Коучинг IAS Мумбаи
  • JEE4
  • 9000 JEE 9000 JEE 9000 Advanced
  • Образец статьи JEE
  • Вопросник JEE
  • Биномиальная теорема
  • Статьи JEE
  • Квадратное уравнение
  • NEET
    • Программа BYJU NEET
    • NEET 2020
    • NEET Eligibility
    • NEET Eligibility
    • NEET Eligibility 2020 Подготовка
    • NEET Syllabus
    • Support
      • Разрешение жалоб
      • Служба поддержки
      • Центр поддержки
  • Государственные советы
    • GSEB
      • GSEB Syllabus
      • GSEB Образец статьи 003 GSEB Books
    • MSBSHSE
      • MSBSHSE Syllabus
      • MSBSHSE Учебники
      • MSBSHSE Образцы статей
      • MSBSHSE Вопросники
    • AP Board
    • AP Board
    • AP Board
        9000
      • AP 2 Year Syllabus
    • MP Board
      • MP Board Syllabus
      • MP Board Образцы документов
      • MP Board Учебники
    • Assam Board
      • Assam Board Syllabus
      • Assam Board
      • Assam Board
      • Assam Board Документы
    • BSEB
      • Bihar Board Syllabus
      • Bihar Board Учебники
      • Bihar Board Question Papers
      • Bihar Board Model Papers
    • BSE Odisha
      • Odisha Board
      • Odisha Board
        • Odisha Board 9000
        • ПСЕБ 9 0002
        • PSEB Syllabus
        • PSEB Учебники
        • PSEB Вопросы и ответы
      • RBSE
        • Rajasthan Board Syllabus
        • RBSE Учебники
        • RBSE
        • RBSE
        • 000 HPOSE
        • 000 HPOSE
        • 000
        • 000 HPOSE
        • 000
        • 000 HPOSE
        • 000
        • 000 0003 Контрольные документы
      • JKBOSE
        • JKBOSE Syllabus
        • JKBOSE Образцы документов
        • Экзаменационные образцы JKBOSE
      • TN Board
        • TN Board Syllabus
        • 9000 Papers 9000 TN Board Syllabus 9000 Книги
      • JAC
        • Программа обучения JAC
        • Учебники JAC
        • J
  • .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Theme: Overlay by Kaira Extra Text
    Cape Town, South Africa