Разное

На какой частоте работает wi fi: Частоты Wi-Fi: 2.4 и 5 ГГц

Содержание

Частоты Wi-Fi: 2.4 и 5 ГГц

Привет, мой дорогой читатель. Надеюсь, у тебя всё хорошо и солнышко светит над твоей головой. А сегодня я (маг беспроводных сетей в третьем поколении) поведаю тебе про все тайны частоты WiFi сети. Начнём, наверное, с определения Wi-Fi — это определённый стандарт радиовещания, который используется для распространения нумерованных пакетов данных между двумя или более устройствами. В частности, используется стандарт радиовещания – IEEE 802.11, который был в первые использован компанией Alliance в 1999 году. Сам стандарт был изобретён чуть ранее в 1998 году. Но вы пришли сюда читать про частоту и волны, поэтому поподробнее про них.

Радиоволны

Передача данных происходит путём обычного кодирования, а в последствии перенаправлении кода на передатчик. Он в свою очередь переформатирует электронный сигнал в радиоволну Радиоволна также используется и в передачи информации в мобильной связи, телевидении и также в разогреве еды в микроволновой печи.

У волны как вы, наверное, помните из физики есть три характеристики: частота, амплитуда или высота, а также длина. Именно первая и определяет канал передачи, а также скорость передачи для отдельных более высоких частот.

В частности, изначально с 2000 до 2009 года использовался только один стандарт с частотой 2.4 ГГц. На данный момент он является самым распространенным, так как имеет высокую скорость передачи данных и больший диапазон распространения.

2.4 ГГц

Как уже и было сказано, пока что это основной и лидирующий стандарт передачи данных. На данной частоте работает 13 каналов. Каждый канал имеет ширину в 20 Мгц. Давайте взглянем на диаграмму ниже.

Как видите есть ещё и 14 канал, но он не используется в современных роутерах и маршрутизаторах. Также начало волн начинается с 2.400 GHz, а заканчивается на 2.500 GHz. Один канал занимает от 20 до 40 МГц. На картинке выше канал имеет как раз ширину волны 20 МГц. Но современные маршрутизаторы могут использовать более широкий канал в 40 МГц.

Если присмотреться, то начало следующего канала начинается с 2.406 МГц, то есть один канал может перекрещиваться с ещё 5 каналами. Если на одном канале сидит очень много роутеров, то сигнал может ухудшаться, из-за потери пакетов, появляются лаги, а приёмнику нужно заново отправлять потерянные данные.

Такое часто происходит в многоквартирных домах, когда несколько каналов занимает сразу 2 или даже 3 соседских роутера. На современных аппаратах, вся конфигурация подбора каналов происходит в автономном режиме. Когда роутер включается он ищет максимально отдалённую волну от уже занятых.

ПРИМЕЧАНИЕ! Иногда роутер не может сам выбрать канал и начинаются прерывания, лаги, падает скорость. Советую прочесть мою статью – где я рассказываю, как правильно выбрать канал и улучшить сигнал.

Также на картинке более ярко выделены частоты, которые не пересекаются — это 1, 6 и 11. В идеале, передача данных в этих каналах будет почти без потерь. Соседние же каналы могут слегка портить связь. Если же стоит настройка с шириной – 40 МГц, то канал дополнительно будет пересекаться ещё с 5, что может пагубно влиять на связь.

ВНИМАНИЕ! В Америке использование 12 и 13 частоты – запрещено законом. Поэтому если выбрать в настройках интернет-центра эти диапазоны, то могут быть проблемы с некоторыми устройствами, выпущенными в США.

Как и у любой волны у подобной есть качество затухания, которое напрямую зависит от частоты. 2.4 ГГц — это дециметровая гипервысокая частота. Длина волны примерно равняется 124.3 – 121.3 мм. При такой частоте скорость передачи данных будет выше, но при этом и радиус вещание не будет страдать.

На 2.4 ГГц работают такие стандарты как:

  1. 802.11a
  2. 802.11b
  3. 802.11g
  4. 802.11h
  5. 802.11i
  6. 802.11n

Чаще всего используется именно b, g и n. Первые два более старые и уже устаревают, но все же пока осталось, достаточно много устройств, работающих на этих стандартах. Скорость передачи у них от 11 до 54 Мбит в секунду. Последний N – более новый стандарт, изобретённый в 2009 году. Скорость передачи может достигать 600 Мбит в секунду при нескольких потоках. На одном потоке максимальная скорость – 300 Мбит в сек.

5 ГГц

Данный стандарт был введен совершенно недавно. Диапазон частот варьируется от 5, 170 ГГц до 5,905. Используется стандарты типа 802.11a, h, j, n и ac. Как вы заметили N тоже совместим с данной частотой. Поэтому две сети могу существовать и работать как одно целое. Скорость передачи данных вырастает до нескольких гигабит в секунду. Это обусловлено как раз увеличение частоты в два раза.

С увеличение частоты увеличивается и скорость передачи данных, но растёт затухание. Даже если не будет никаких препятствий, то волна затухнет куда быстрее. Именно поэтому эту частоту чаще используют в небольшом радиусе. Например, для подключения телевизора, компьютера или ноутбук в близи роутера.

Также большим минусом данной частоты является её неустойчивость к препятствиям. То есть она ещё сильнее затухает: от стен, стекла, металла, деревьев – чем волна 2.4 ГГц. Для увеличения скорости применяется ещё одна ширина канала – в 80 Мгц. На данный момент её использовать вполне реально, так как количество каналов – 180, да и роутеров с поддержкой 5ГГц не так много. Поэтому каналы у «пятёрки» свободнее.

Затухание сигнала

Напрямую зависит от препятствия. Чем больше ширина препятствия, тем сильнее затухание. Также нужно учитывать и материал. Вот таблица примерного затухания.

МатериалШирина (см)Потери сигнала в dB(П) Процент потери в диапазоне (%)
Улица без препятствий000
Железобетон52590
Стекло0.5326
Дерево2945
Бетон152075
Бетон312382

Расчёт по этой формуле:

W*(100% – П%) =D

  • W – это полный радиус дейсвтия волны без препятсвтий.
  • П – это процент потери диапазона.
  • D – это окончательный диапазон волны после расчёта.

Приведём пример: дальность действия волны W ровна 150 метров на открытой местности. Мы поставим на пути волны стекло в 1 см. Тогда 150*(100% – 26%*2) = 78 метров. Как вы, наверное, увидели, самым серьезным препятствием – является метал. При правильном использовании его можно использовать как отражатель волны.

Также к более плохой связи можно отнести способность огибать препятствие. И эта характеристика также зависит от длины волны. Так как 2.4 ГГц имеет меньший размер волны, то она способна почти без потерь обогнуть более широкое препятствие чем волна 5 ГГц. То есть чем больше длина, тем ниже скорость передачи, но меньше затухание от препятствий.

К затуханию можно приписать, так же естественную потерю мощности сигнала, которая уменьшается со временем пучка волны. От преград волна также, как и света может отражаться. Чем больше отражается волна, тем слабее становится сигнал. Именно поэтому нельзя точно сказать, насколько далеко будет бить тот или иной роутер.

Как усиливается сигнал

В более дорогих моделях используется схема MIMO. То есть передача данных происходит сразу в несколько потоков. При использовании данные разбивается на число частей схемы MIMO и одновременно отправляется на приёмник. Но приёмник также должен поддерживать эту технологию.

Например, таким образом можно достичь скорости 7 Гбит в секунду если использовать схему 8x MU-MIMO. То есть у данного роутера должно обязательно стоять до 8 антенн или больше. Каждая антенна будет отправлять свой сигнал, а в конце они будут складываться.

Дома чаще всего используют именно антенны широкого действия. Они обладают меньшим коэффициентом усиления, но сам пучок имеет больший радиус. Станет более понятно, если вы взгляните на картинку ниже. При увеличении dB почек становится более узким. Именно поэтому на мощных вай-фай роутерах для увеличения покрытия используют сразу несколько мощных антенн.

Частота Wi-Fi роутера — как поменять канал и частоту

Выбор в пользу беспроводного интернета, делает нашу жизнь значительно комфортнее, но вместе с тем, создает некие препятствия для трансляции сигнала. В отличии от локальной передачи данных через кабель, где интернет соединение происходит напрямую от провайдера, сигнал Wi-Fi передается по определённым каналам в нескольких частотных диапазонах.

На каких частотах работает роутер

На данный момент, маршрутизаторы работают на частотах 2,4 ГГц и 5 ГГц. Причем, 2,4 ГГц появилась раньше, поэтому основная масса точек доступа работают именно в этом диапазоне. В свою очередь, каждая Wi-Fi сеть на этой частоте, работает на каналах от 1-го до 13-го. Зачастую, проблемы с подключением могут возникнуть, если несколько соседних роутеров работают на одном канале и делят скорость между собой. Обычно, маршрутизаторы автоматически подключаются к более свободному каналу, поэтому эту проблему можно решить, попросту перезагрузив сетевое оборудование.

Тем не менее, это не освобождает диапазон 2,4 ГГц от нагрузки большого количества устройств, работающих на нём, тем более, что это могут быть не только роутеры, но и некоторые бытовые приборы. Поэтому, мы рекомендуем дополнительно задействовать частоту 5 ГГц, как более новую и свободную. Почему именно дополнительно? Дело в том, обе частоты работают независимо друг от друга и не все устройства (особенно устаревшие) работают в диапазоне 5 ГГц. Хотя, если вы полностью уверены, что не потребуется подключать устройства поддерживающие только 2,4 ГГц, можно полностью сменить частоту Wi-Fi роутера на 5 ГГц.

Как изменить и настроить частоту роутера

Стоит сказать сразу, чтобы поменять диапазон с 2,4 ГГц на 5 ГГц, нужно что бы маршрутизатор технически поддерживал эту частоту и соответствующий сертификат Wi-Fi, о чем мы подробнее писали в предыдущей статье.

Иными словами, если у вас старая модель роутера, тут без вариантов — железо придется менять.

Узнать частоту Wi-Fi роутера и поменять её, если устройство работает в двух диапазонах, можно в настройках. Зайти же в настройки роутера можно либо через кабель (обычно он прилагается к устройству при покупке), либо, введя IP-адрес в адресной строке браузера (например, http://192.168.1.1 или  http://192.168.0.1). Логин и пароль по умолчанию задан производителем и указан в инструкции или на самом маршрутизаторе.

Вся необходимая информация находится в разделе “Беспроводная сеть” или “Беспроводной режим” (вид интерфейса, естественно, зависит от конкретного производителя).

В любом случае, вы можете настроить канал, даже если нет возможности изменить диапазон. У 2,4 ГГц, лучше всего выбрать полосы 1, 6 или 11, так как они являются неперекрывающимися в соответствии со стандартами по обеспечению минимума в 25 МГц.

Что касается частоты 5 ГГц, то здесь формирование каналов происходит по четырём полосам. Как минимум, у вас будут указаны каналы 36, 40, 44 и 48 — это блок UNII-1, но в зависимости от устройства, их может быть и больше, вплоть до 161-го.

Вывод

Увеличивать скорость через провайдера, подключая другие интернет тарифы не имеет смысла, если у вас старое сетевое оборудование, не поддерживающее новые Wi-Fi стандарты и частоты. С увеличением количества пользователей, возросла и нагрузка на беспроводную сеть, с той же прогрессией растет и количество помех в диапазоне 2,4 ГГц.

Частота 5 ГГц для Wi-Fi роутеров сейчас более свободна и стабильна, имеет больше непересекающихся каналов, а значит сигналы с соседствующих устройств реже накладываются друг на друга и не делят скорость.

Чтобы увеличить сигнал Wi-Fi и скорость интернета, нужно идти в ногу со временем и приобретать современные маршрутизаторы, соответствующие новым требованиям беспроводной сети.

Wi-Fi 2,4 ГГц против 5 ГГц

Wi-Fi- как много в этом звуке… Думаю все знают, что Wi-Fi это беспроводная локальная сеть. И казалось бы, что сложного может быть в Wi-Fi, все просто, но не тут то было достаточно, к примеру, почитать спецификацию роутера. Чего там только не написано- IEEE802.11n, IEEE802.11b, IEEE802.11g, Диапазон частот 2.4 ГГц, 5 ГГц. Что в этом разобраться необходимо иметь два высших образования в сфере IT. Но на самом деле все не так сложно как кажется, в этой статье я попытаюсь объяснить, что значат числа и цифры, которые сопровождают Wi-Fi устройства.

Итак начнем с стандартов IEEE (Institute of Electrical and Electronics Engineers)- международная некоммерческая ассоциация специалистов в области техники, мировой лидер в области разработки стандартов по радиоэлектронике и электротехнике. Главная цель IEEE- стандартизация в области IT. Так вот, что бы различать стандарты, после сокращения IEEE написаны цифры, которые соответствуют определенной группе стандартов, например:

  • Ethernet — это стандарты группы IEEE 802.3
  • WiFi — это стандарты группы IEEE 802.11
  • WiMAx — это стандарты группы IEEE 802.16

Двигаемся дальше, что же означают буквы после IEEE 802.11. Эти буквы означают стандарт Wi-Fi сети.











Стандарт IEEE

Название технологии на английском языке

Частотный диапазон работы сетей,ГГцГод ратификации WiFi альянсомТеоретическая пропускная способность, Мбит/с
802.11 bWireless b2,4199911
802.11 aWireless a5200154
802.11 gWireless g2,4200354
Super G2,42005108
802.11 nWireless N, 150Mbps2,4150
Wireless N Speed2,4270
Wireless N, 300Mbps2,42006300
Wireless Dual Band N2,4 и 52009300
Wireless N, 450Mbps2,4/ 2,4 и 5450
802.11 acWireless ac51300

 Из этой таблицы видно, что с каждым новым стандартом скорость Wi-Fi сети неуклонно растет. Если вы увидите на каком либо устройстве (роутере, ноутбуке и т.д.) надпись IEEE 802.11 b/g/n это означает, что устройство поддерживает три стандарта 802.11b, 802,11g, 802.11n (на момент написания статьи это самое популярное сочетания, поскольку стандарт 802.11a устарел и использует диапазон частот 5 Ггц, а 802.11ac еще не получил большой популярности).

Самое время пришло разобраться в частотных диапазонах в которых работают Wi-Fi сети, их два- 2,4 ГГц (точнее, полосу частот 2400МГц-2483,5МГц) и 5 ГГц (точнее диапазон 5,180-5,240ГГц и 5,745-5,825ГГц).

Большинство устройств работают на частоте 2,4 ГГц, это подразумевает- использование полосы 2400МГц-2483,5МГц с частотой шага 5МГц. эти полосы образуют каналы, для Росии их 13

Канал    Нижняя частота    Центральная частота    Верхняя частота

1                   2.401                          2.412                           2.423
2                   2.406                          2.417                           2.428
3                   2.411                          2.422                           2.433
4                   2.416                          2.427                           2.438
5                   2.421                          2.432                           2.443
6                   2.426                          2.437                           2.448
7                   2.431                          2.442                           2.453
8                   2.436                          2.447                           2.458
9                   2.441                          2.452                           2.463
10                 2.446                          2.457                           2.468
11                 2.451                          2.462                           2.473
12                 2.456                          2.467                           2.478
13                 2.461                          2.472                           2.483

 При настройке роутера можно выбрать один из каналов или довериться выбору самого роутера и выбрать АВТО. Стоит заметить, что выбор канала ответственное дело, поскольку чем больше устройств (например соседских роутеров) работают на вашем канале, тем меньше будет скорость у всех кто использует этот канал. Для правильного выбора стоит воспользоваться одной из программ сканирования W-Fi сетей в вашем доме/ офисе, определить менее занятый канал и выбрать его при настройке Wi-Fi роутера. Более подробно как это сделать описано в статье Как выбрать/ изменить беспроводной канал на маршрутизаторе/ роутере.

Частотные каналы в спектральной полосе 5GHz:
















КаналЧастота, ГГц Канал Частота, ГГц Канал Частота, ГГц Канал Частота, ГГц
34 5,17 62 5,31 149 5,745 177 5,885
36 5,18 64 5,32 15 5,755 180 5,905
38 5,19 100 5,5 152 5,76    
40 5,2 104 5,52 153 5,765    
42 5,21 108 5,54 155 5,775    
44 5,22 112 5,56 157 5,785    
46 5,23 116 5,58 159 5,795    
48 5,24 120 5,6 160 5,8    
50 5,25 124 5,62 161 5,805    
52 5,26 128 5,64 163 5,815    
54 5,27 132 5,66 165 5,825    
56 5,28 136 5,68 167 5,835    
58 5,29 140 5,7 171 5,855    
60 5,3 147 5,735 173 5,865    

Соответственно в РФ имеем следующие не перекрывающиеся каналы шириной 20MHz внутри помещений:

1. 5150-5250 MHz
36: 5180 MHz
40: 5200 MHz
44: 5220 MHz
48: 5240 MHz (данный канал эффективен при условии задействования следующей полосы)

2. 5250-5350 MHz (уточняйте возможность использования данной полосы)
52: 5260 MHz
56: 5280 MHz
60: 5300 MHz
64: 5320 MHz

 За счет более редкого использования и больших количеств каналов точки Wi-Fi, скорость работы Wi-Fi увеличивается. Но для использования 5ГГц необходимо что бы не только Wi-Fi источник (роутер) работал на этой частоте, но и само устройство (ноутбук, планшет, телефон, телевизор). Минус использования 5ГГц это дороговизна оборудования, в сравнении с устройствами работающими на частоте 2,4 ГГц и меньшая дальность действия в сравнении с частотой 2,4 ГГц.

Я очень надеюсь, моя статья помогла Вам! Просьба поделиться ссылкой с друзьями:

Что такое WiFi? Подробно о свойствах WiFi сигнала

на картинке: графическое отображение WiFi волн в городе.

1. Что такое WiFi?

1.1. Связь частоты и длины волны.

2. Свойства WiFi сигнала.

2.1. Поглощение.

2.2. Огибание препятствий.

2.3. Естественное затухание.

2.4. Отражения сигнала.

2.5. Плотность данных.

2.6. Почему сложно дать однозначный ответ: на какое расстояние будет передавать сигнал WiFi оборудование?

3. Диапазоны и частоты WiFi

3.1. Диапазон 2,4 ГГц.

3.2. Диапазон 5 ГГц.

Что такое WiFi?

WiFi — беспроводной способ связи, основанный на всем нам знакомом электромагнитном излучении. Сигнал WiFi относят к радиоволнам, соответственно, он имеет такие же свойства, характеристики и поведение. Радиоволны, в свою очередь, подчиняются практически тем же физическим законам, что и свет: распространяются в пространстве с такой же скоростью (почти 300 000 километров в секунду), подвержены дифракции, поглощению, затуханию, рассеиванию и т. д.

Основные характеристики радиоволны, а значит и сигнала WiFi — это ее длина и частота (частотный диапазон). Последний параметр означает частоту переменного тока, необходимую для получения волны нужной длины и используется для классификации радиоволн. Другое определение частоты — это количество волн, проходящих через определенную точку пространства в секунду.

Существует распределение радиоволн по диапазонам, в зависимости от частоты, утвержденная Международным союзом электросвязи (МСЭ, английская аббревиатура — ITU).

Буквенные

обозначения

диапазона

Название волн.

Название частот.

Диапазон частот

Диапазон

длины волны

ОНЧ (VLF)Мириаметровые. Очень низкие3—30 кГц100–10 км
НЧ (LF)Километровые. Низкие. 30—300 кГц10–1 км
СЧ (MF)Гектометровые. Средние.300—3000 кГц1–0.1 км
ВЧ (HF)Декаметровые. Высокие.3—30 МГц100–10 м
ОВЧ (VHF)Метровые. Очень высокие.30—300 МГц10–1 м
УВЧ (UHF)Дециметровые. Ультравысокие.300—3000 МГц1–0.1 м
СВЧ (SHF)Сантиметровые. Сверхвысокие.3—30 ГГц10–1 см
КВЧ (EHF)Миллиметровые. Крайне высокие.30—300 ГГц10–1 мм
THFДециметровые. Гипервысокие.300—3000 ГГц1–0.1 мм

Сфера применения радиоволн зависит от частотного диапазона. Это может быть  телевидение, радиосвязь, мобильная связь, радиорелейная связь и т. д. Вообще, радиочастотный эфир занят довольно плотно: использование всех диапазонов буквально расписано:

В том числе это и беспроводная связь WiFi. Для нее используются дециметровые и сантиметровые волны ультравысокой и сверхвысокой частоты (УВЧ и СВЧ) в частотных диапазонах 2,4 ГГц, 5 ГГц и  и других редкоиспользуемых: 900 МГц, 3,6 ГГц, 10 ГГц, 24 ГГц.

Главное преимущество WiFi-связи отражено во втором ее названии — беспроводная связь. Именно отсутствие проводов вкупе со все возрастающей скоростью передачи данных является ключевым моментом при выборе этого способа соединения.

Если речь идет о домашних пользователях — беспроводная связь удобна, она позволяет не привязываться к определенному месту в квартире для входа в интернет.

Если мы говорим о корпоративной связи, о провайдерских услугах, то иногда прокладка кабеля для передачи данных — это дорого, нецелесообразно или вообще невозможно. Например, нужно раздать интернет в частном секторе, прокинуть магистральный канал через ущелье, в удаленный населенный пункт и т. д. В этом случае на выручку приходит WiFi. Проблемная территория преодолевается с помощью беспроводного канала.

Связь частоты сигнала WiFi и длины волны

Характеристики длины волны сравнительно редко используются в параметрах оборудования WiFi. Однако иногда, для понимания физических свойств и поведения сигнала беспроводной связи в различных условиях неплохо разбираться в связи частоты и длины радиоволн.

Общее правило: Чем выше частота, тем короче длина волны. И наоборот.

Формула для расчета длины волны:

Длина волны WiFi сигнала (в метрах)= Скорость света (в м/сек) / Частота сигнала (в герцах).

Скорость света в м/сек = 300 000 000.

После упрощения формулы получаем: Длина волны в метрах = 300/ Частота в МГц.

Свойства WiFi сигнала

 Поглощение.

Главное условие для создания беспроводного линка  на расстояние большее, чем сотня метров — прямая видимость между точками установки оборудования. Проще говоря, если мы стоим рядом с одной точкой доступа WiFi, то наш взгляд, направленный в сторону второй точки, не должен упираться в стену, лес, многоэтажный дом, холм и т. д. (Это еще не все, нужно также учитывать помехи в Зоне Френеля, но об этом в другой статье.)

Такие объекты просто-напросто отражают и поглощают сигнал WiFi, если не весь, то львиную его часть.

То же самое происходит и в помещении, где сигнал от WiFi роутера или точки доступа проходит через стены в другие комнаты/на другие этажи. Каждая стена или перекрытие «отбирает» у сигнала некоторое количество эффективности.

На небольшом расстоянии, например, от комнатного роутера до ноута, у радиосигнала еще есть шансы, преодолев стену, все-таки добраться до цели. А вот на длинной дистанции в несколько километров любое такое ослабление существенно сказывается на качестве и дальности WiFi связи.

Процент ухудшения сигнала вай-фай при прохождении через препятствия зависит от нескольких факторов:

  • Длины волны. В теории, чем больше длина волны (и ниже частота вай-фай), тем больше проникающая способность сигнала. Соответственно, WiFi в диапазоне 2,4 ГГц имеет большую проникающую способность, чем в диапазоне 5 ГГц. В реальных условиях выполнение этого правила очень тесно зависит от того, через препятствие какой структуры и состава проходит сигнал.
  • Материала препятствия, точнее, его диэлектрических свойств.

Преграда

Дополнительные потери при прохождении (dB)

Процент эффективного расстояния*, %

Открытое пространство

0

100

Нетонированное окно (отсутствует металлизированное покрытие)

3

70

Окно с металлизированным покрытием (тонировкой)

5-8

50

Деревянная стена

10

30

Стена 15,2 см (межкомнатная)

15-20

15

Стена 30,5 см (несущая)

20-25

10

Бетонный пол или потолок

15-25

10-15

Цельное железобетонное перекрытие

20-25

10

* Процент эффективного расстояния — эта величина означает, какой процент от первоначально рассчитанной дальности (на открытой местности) сможет пройти сигнал после преодоления препятствия.

Например, если на открытой местности дальность сигнала Wi-Fi  — до 200 метров, то после прохождения через нетонированное окно она уменьшится до 140 метров (200 * 70% = 140). Если следующим препятствием для этого же сигнала станет бетонная стена, то после нее дальность составит уже максимум 21 метр (140*15%).

Отметим, что вода и металл — самые эффективные поглотители WiFi, т. к. являются электрическими проводниками и «забирают» на себя большое количество энергии сигнала. Например, если дома на пути вай-фай от роутера до вашего ноута стоит аквариум, то практически наверняка соединения не будет.

Именно поэтому во время дождя и других «влажных» атмосферных осадков наблюдается небольшое снижение качества беспроводного соединения, поскольку капли воды в атмосфере поглощают сигнал.  

Частично этот фактор влияет и на затухание WiFi передачи в листве деревьев, т. к. они содержат большой процент воды.

  • Угла падения луча на препятствие. Помимо материала преграды, через которую проходит сигнал вай-фай, важен также угол падения луча. Так, если сигнал проходит через препятствие под прямым углом, это обеспечит меньшие потери, чем если бы он падал на него под углом 45 градусов. Еще хуже, если сигнал проходит через преграду под очень острым углом. В этом случае, грубо говоря, можно смело умножать толщину стены на 10 и рассчитывать потери WiFi передачи согласно этой величине.

Огибание препятствий.

По-научному это поведение луча WiFi называется дифракцией, хотя на самом деле понятие дифракции гораздо сложнее, чем простое «огибание препятствий».

 В общем можно вывести правило — чем короче длина волны (выше частота), тем хуже она огибает препятствия.

Основывается это правило на известном физическом свойстве волны: если размер препятствия меньше, чем длина волны, то она его огибает. В целом отсюда логично проистекает, что чем короче длина волны, тем меньшее остается вариантов препятствий, которые она может в принципе обойти, и поэтому принимается, что ее огибающая способность хуже.

Огибание на практике означает меньшее рассеивание волны как луча энергии вокруг препятствия, меньшее количество потерь сигнала.

Возьмем популярные частоты 2,4 ГГц (длина волны 12,5 см) и 5 ГГц (длина волны 6 см). Мы видим подтверждение правила на примере прохождения лесного массива. Стандартные размеры листьев, стволов, веток деревьев, в среднем будут меньше, чем 12,5 см, но больше, чем 6 см. Поэтому сигнал WiFi 5 ГГц диапазона при прохождении через густую листву “потеряется” практически полностью, в то время как 2,4 ГГц справится лучше.

Поэтому WiFi оборудование, работающее в диапазоне 900 МГц, используется в условиях отсутствия прямой видимости сигнала — его длина волны составляет 33,3 см, что позволяет огибать большее количество преград. Однако надо учитывать размеры предполагаемых препятствий и понимать, что сигнал 900 МГц не сможет “обойти” бетонную стену, расположенную перепендикулярно направлению сигнала. Здесь уже сыграют роль проникающие способности волны, которые, как мы уже говорили у сигналов с низкой частотой довольно неплохие.

Также именно поэтому для нормальной работы беспроводного оборудования, использующего частоту 24ГГц (длина волны 1,25 см) необходима абсолютно чистая видимость, потому что все препятствия больше сантиметра будут отражать и поглощать сигнал.

Как мы уже упоминали, в отношении прохождении сигнала через лесной массив играет роль также содержание воды в листьях, а также длина волны.

Естественное затухание.

Как далеко мог бы передаваться сигнал WiFi, если создать ему идеальные условия прямой видимости? В любом случае не бесконечно, потому что чем больше дальность беспроводного “пролета”, тем больше сигнал затухает сам по себе. Происходит это по 2 причинам:

  • Земная поверхность поглощает часть энергии сигнала. Чем выше частота WiFi, тем интенсивнее идет поглощение.

  • Сигнал WiFi даже из самой узконаправленной антенны распространяется не прямой линией, а лучом. Соответственно, чем дальше расстояние, тем шире становится луч, тем меньшая мощность сигнала приходится на единицу площади, и тем меньше энергии сигнала попадает в принимающую антенну.

Отражения сигнала.

Сигнал WiFi, как любая радиоволна, как свет, отражается от поверхностей и ведет себя при этом аналогично. Но тут есть нюансы — какие-то поверхности будут поглощать сигнал (полностью или частично), а какие-то — отражать (полностью или частично). Это зависит от материала поверхности, его структуры, наличия неровностей на поверхности и частоты WiFi.

Неконтролируемые отражения сигнала ухудшают его качество. Частично — из-за потери общей энергии сигнала (до принимающей антенны, упрощенно говоря, “долетает не всё” или долетает после переотражений, с задержками). Частично — из-за интерференции с негативным влиянием, когда волны накладываются в противофазе и ослабляют друг друга.

Интерференция может иметь и положительное влияние, если волны WiFi накладываются друг на друга в одинаковых фазах. Это часто используется для усиления мощности сигнала.

Плотность данных.

Частота WiFi влияет также на еще один важный параметр — объем передаваемых данных. Здесь существует прямая связь — чем выше частота, тем больше данных в единицу времени можно передать. Возможно, именно поэтому первая высокопроизводительная РРЛ от Ubiquiti  — AirFiber 24, а также ее более мощная модификация — Airfiber 24HD были выпущены на частоте 24 ГГц.

Почему сложно дать однозначный ответ: на какое расстояние будет передавать сигнал WiFi оборудование?

Физические свойства и поведение радиоволны в окружающем мире довольно сложны. Нельзя взять какой-то один параметр и по нему рассчитать дальность беспроводного сигнала. В каждом конкретном случае на дальность будут оказывать влияние различные факторы окружающей среды:

  • Поглощение сигнала препятствиями, земной корой, поверхностью водоемов.
  • Дифракция и рассеивание сигнала из-за преград на пути.
  • Отражения сигнала от препятствий, земли, воды и возникающие в результате этого интерференции волны.
  • На больших расстояниях — радиогоризонт, т. е. искривление земной коры.
  • Зона Френеля и, соответственно — высота расположения оборудования над поверхностью земли.

Именно поэтому реальная дальность оборудования, как, впрочем, и пропускная способность, может очень сильно отличаться в различных условиях.

Диапазоны и частоты WiFi

Как мы уже сказали, для WiFi связи выделено несколько разных частотных диапазонов:  900 МГц, 2,4 ГГц, 3,65 ГГц, 5 ГГц, 10 ГГц, 24 ГГц. 

В Украине на данный момент чаще всего применяются точки доступа WiFi и антенны WiFi 2,4 ГГц и 5ГГц.

Основные отличия 2,4 ГГц и  5ГГц:

2,4 ГГц. Длина волны 12,5 см. Относится к дециметровым волнам ультравысокой частоты (УВЧ).

  • В реальных условиях — меньшая дальность сигнала из-за более широкой зоны Френеля, что чаще всего не компенсируется тем, что сигнал на этой частоте меньше подвержен естественному затуханию.
  • Лучшее преодоление небольших преград, например, густых лесных массивов, благодаря хорошей проникающей способности и огибанию препятствий.
  • Меньше относительно неперекрывающихся каналов (всего 3), а значит, “ пробки на дорогах” — теснота в эфире, и как результат — плохая связь.
  • Дополнительная зашумленность эфира другими устройствами, работающими на этой же частоте, в том числе мобильных телефонов, микроволновок и т. п.

5 ГГц.  Длина волны 6 см. Относится к сантиметровым волнам сверхвысокой частоты (СВЧ).

  • Большее количество относительно неперекрывающихся каналов (19).
  • Большая емкость данных.
  • Большая дальность сигнала, в связи с тем, что Зона Френеля меньше.
  • Такие препятствия, как листва деревьев, стены волны диапазона 5ГГц преодолевают гораздо хуже, чем 2,4.

Диапазоны 900 МГц, 3,6 ГГц, 10 ГГц, 24 ГГц для нас скорее экзотика, однако могут использоваться:

  1. Для работы в условиях, когда стандартные диапазоны плотно заняты.

  2. Если требуется создать беспроводное соединение между двумя точками при отсутствии прямой видимости (лес и другие препятствия). Это касается такой частоты, как 900 МГц (в нашей стране ее нужно использовать с осторожностью, так как на ней работают сотовые операторы).

  3. Если для использования частоты не требуется получать лицензию в контролирующих органах. Такое преимущество часто встречается в презентациях зарубежных производителей, однако для Украины это не совсем актуально, так как условия лицензирования в нашей стране другие.

В IEEE ведутся разработки по принятию новых стандартов и, соответственно, использованию других частот для WiFi. Не исключено, к примеру, что в ближайшее время диапазон 60 ГГц также станет использоваться для беспроводной передачи. Точно также, как и возможна вероятность “отжатия” в будущем некоторых частот, сейчас принадлежащих WiFi, в пользу, например, сотовых операторов.

Какую частоту выбрать в настройках роутера?

Какой диапазон частоты использовать для Wi-Fi — 2,4 или 5 ГГц?

Практически все современные модели роутеров работают на частоте 2,4 и 5 ГГц. Какую частоту выбрать, что лучше?

Почему именно эти дипазоны? Все очень просто — на данный момент это наиболее распространенные частоты, на которых осуществляется беспроводное соединение. Большинство устройств Wi-Fi выпускается именно для 2,4 ГГц или 5 ГГц и стандартов, на которых они основаны.

Для сигнала диапазона 5 ГГц даже деревья, листва и т.д. – существенные помехи. Поэтому для хороших показателей дальности и скорости оборудованию требуется чистая прямая видимость. Отличие частоты 2,4 ГГц в том, что для нее это не так критично.

В то же время по другому параметру – наличию помех в эфире, частота 2,4 ГГц проигрывает. В этом диапазоне работают многие посторонние устройства — микроволновки, телефоны и т.д. – поэтому количество шумов может быть очень существенным.

Основные особенности работы Wi-Fi в диапазоне 5 ГГц и 2,4 ГГц.

  • Чтобы работал Wi-Fi на частоте 5 ГГц, для этого необходимо, чтобы маршрутизатор и приемник поддерживали стандарт 802.11 n или 802.11 ac. Если устройство не поддерживает этот стандарт, то сеть 5 ГГц. работать не будет.
  • У диапазона 5 ГГц обычно стабильный сигнал, но дальность действия меньше по сравнению с 2,4 ГГц. Поэтому Wi-Fi в диапазоне 5 ГГц стоит использовать в помещениях, где он точно достигнет каждой комнаты.
  • Сеть с частотой 5 ГГц не так сильно подвержена помехам. Например, в многоквартирных домах можно найти много беспроводных сетей, которые работают в диапазоне 2,4 ГГц. А вот частота 5 ГГц обычно используется значительно реже.
  • Если Wi-Fi работает нестабильно и слишком медленно, или рядом находится много соседских сетей, вам лучше использовать 5 ГГц.
  • Частота 2,4 ГГц является более загруженной по сравнению с частотой 5 ГГц, устройства на частоте 2,4 ГГц испытывают больше помех, чем устройства на частоте 5 ГГц.
  • С распространением сигнала через стены маршрутизатор с частотой 2,4 ГГц справляется немного лучше. В теории дальность действия сети 2,4 ГГц также выше, но на практике это обычно выглядит по-разному из-за многочисленных помех.
  • Если вы используете много старых устройств, поддержка диапазона 2,4 ГГц также является необходимой, так как не все гаджеты поддерживают 5 ГГц.
  • Из-за небольшого количества каналов (всего 13), в теории в сети 2,4 ГГц есть только 3 канала без перекрытия. Это огромный недостаток по сравнению с сетью 5 ГГц, обеспечивающей до 19 каналов без перекрытия и, таким образом, более отказоустойчивую работу. Кроме того, другие приборы (например, Bluetooth-гаджеты) работают с частотой 2,4 ГГц и тем самым мешают сети.

Важно! В частотном диапазоне 2,4 ГГц обеспечивается бо́льшая площадь покрытия (дальность распространения сигнала или более широкий охват сигнала), чем при использовании диапазона 5 ГГц, но при этом возможна более низкая скорость передачи данных. В диапазоне 5 ГГц обеспечивается меньшая площадь покрытия, чем при использовании диапазона 2,4 ГГц, но выше скорость передачи данных.

Как изменить и настроить частоту роутера

Стоит сказать сразу, чтобы поменять диапазон с 2,4 ГГц на 5 ГГц, нужно что бы маршрутизатор технически поддерживал эту частоту и соответствующий сертификат Wi-Fi, о чем мы подробнее писали в предыдущей статье.

Иными словами, если у вас старая модель роутера, тут без вариантов — железо придется менять.

Узнать частоту Wi-Fi роутера и поменять её, если устройство работает в двух диапазонах, можно в настройках. Зайти же в настройки роутера можно либо через кабель (обычно он прилагается к устройству при покупке), либо, введя IP-адрес в адресной строке браузера (например, http://192.168.1.1 или  http://192.168.0.1). Логин и пароль по умолчанию задан производителем и указан в инструкции или на самом маршрутизаторе.

Вся необходимая информация находится в разделе “Беспроводная сеть” или “Беспроводной режим” (вид интерфейса, естественно, зависит от конкретного производителя).

В любом случае, вы можете настроить канал, даже если нет возможности изменить диапазон. У 2,4 ГГц, лучше всего выбрать полосы 1, 6 или 11, так как они являются неперекрывающимися в соответствии со стандартами по обеспечению минимума в 25 МГц.

Что касается частоты 5 ГГц, то здесь формирование каналов происходит по четырём полосам. Как минимум, у вас будут указаны каналы 36, 40, 44 и 48 — это блок UNII-1, но в зависимости от устройства, их может быть и больше, вплоть до 161-го.

Вывод

Увеличивать скорость через провайдера, подключая другие интернет тарифы не имеет смысла, если у вас старое сетевое оборудование, не поддерживающее новые Wi-Fi стандарты и частоты. С увеличением количества пользователей, возросла и нагрузка на беспроводную сеть, с той же прогрессией растет и количество помех в диапазоне 2,4 ГГц.

Частота 5 ГГц для Wi-Fi роутеров сейчас более свободна и стабильна, имеет больше непересекающихся каналов, а значит сигналы с соседствующих устройств реже накладываются друг на друга и не делят скорость.

Чтобы увеличить сигнал Wi-Fi и скорость интернета, нужно идти в ногу со временем и приобретать современные маршрутизаторы, соответствующие новым требованиям беспроводной сети.

Wi-Fi 2,4 ГГц против 5 ГГц

Wi-Fi- как много в этом звуке… Думаю все знают, что Wi-Fi это беспроводная локальная сеть. И казалось бы, что сложного может быть в Wi-Fi, все просто, но не тут то было достаточно, к примеру, почитать спецификацию роутера. Чего там только не написано- IEEE802.11n, IEEE802.11b, IEEE802.11g, Диапазон частот 2.4 ГГц, 5 ГГц. Что в этом разобраться необходимо иметь два высших образования в сфере IT. Но на самом деле все не так сложно как кажется, в этой статье я попытаюсь объяснить, что значат числа и цифры, которые сопровождают Wi-Fi устройства.

Итак начнем с стандартов IEEE (Institute of Electrical and Electronics Engineers)- международная некоммерческая ассоциация специалистов в области техники, мировой лидер в области разработки стандартов по радиоэлектронике и электротехнике. Главная цель IEEE- стандартизация в области IT. Так вот, что бы различать стандарты, после сокращения IEEE написаны цифры, которые соответствуют определенной группе стандартов, например:

  • Ethernet — это стандарты группы IEEE 802.3
  • WiFi — это стандарты группы IEEE 802.11
  • WiMAx — это стандарты группы IEEE 802.16

Двигаемся дальше, что же означают буквы после IEEE 802.11. Эти буквы означают стандарт Wi-Fi сети.











Стандарт IEEE

Название технологии на английском языке

Частотный диапазон работы сетей,ГГцГод ратификации WiFi альянсомТеоретическая пропускная способность, Мбит/с
802.11 bWireless b2,4199911
802.11 aWireless a5200154
802.11 gWireless g2,4200354
Super G2,42005108
802.11 nWireless N, 150Mbps2,4150
Wireless N Speed2,4270
Wireless N, 300Mbps2,42006300
Wireless Dual Band N2,4 и 52009300
Wireless N, 450Mbps2,4/ 2,4 и 5450
802.11 acWireless ac51300

 Из этой таблицы видно, что с каждым новым стандартом скорость Wi-Fi сети неуклонно растет. Если вы увидите на каком либо устройстве (роутере, ноутбуке и т.д.) надпись IEEE 802.11 b/g/n это означает, что устройство поддерживает три стандарта 802.11b, 802,11g, 802.11n (на момент написания статьи это самое популярное сочетания, поскольку стандарт 802.11a устарел и использует диапазон частот 5 Ггц, а 802.11ac еще не получил большой популярности).

Самое время пришло разобраться в частотных диапазонах в которых работают Wi-Fi сети, их два- 2,4 ГГц (точнее, полосу частот 2400МГц-2483,5МГц) и 5 ГГц (точнее диапазон 5,180-5,240ГГц и 5,745-5,825ГГц).

Большинство устройств работают на частоте 2,4 ГГц, это подразумевает- использование полосы 2400МГц-2483,5МГц с частотой шага 5МГц. эти полосы образуют каналы, для Росии их 13

Канал    Нижняя частота    Центральная частота    Верхняя частота

1                   2.401                          2.412                           2.423
2                   2.406                          2.417                           2.428
3                   2.411                          2.422                           2.433
4                   2.416                          2.427                           2.438
5                   2.421                          2.432                           2.443
6                   2.426                          2.437                           2.448
7                   2.431                          2.442                           2.453
8                   2.436                          2.447                           2.458
9                   2.441                          2.452                           2.463
10                 2.446                          2.457                           2.468
11                 2.451                          2.462                           2.473
12                 2.456                          2.467                           2.478
13                 2.461                          2.472                           2.483

 При настройке роутера можно выбрать один из каналов или довериться выбору самого роутера и выбрать АВТО. Стоит заметить, что выбор канала ответственное дело, поскольку чем больше устройств (например соседских роутеров) работают на вашем канале, тем меньше будет скорость у всех кто использует этот канал. Для правильного выбора стоит воспользоваться одной из программ сканирования W-Fi сетей в вашем доме/ офисе, определить менее занятый канал и выбрать его при настройке Wi-Fi роутера. Более подробно как это сделать описано в статье Как выбрать/ изменить беспроводной канал на маршрутизаторе/ роутере.

Частотные каналы в спектральной полосе 5GHz:
















КаналЧастота, ГГц Канал Частота, ГГц Канал Частота, ГГц Канал Частота, ГГц
34 5,17 62 5,31 149 5,745 177 5,885
36 5,18 64 5,32 15 5,755 180 5,905
38 5,19 100 5,5 152 5,76    
40 5,2 104 5,52 153 5,765    
42 5,21 108 5,54 155 5,775    
44 5,22 112 5,56 157 5,785    
46 5,23 116 5,58 159 5,795    
48 5,24 120 5,6 160 5,8    
50 5,25 124 5,62 161 5,805    
52 5,26 128 5,64 163 5,815    
54 5,27 132 5,66 165 5,825    
56 5,28 136 5,68 167 5,835    
58 5,29 140 5,7 171 5,855    
60 5,3 147 5,735 173 5,865    

Соответственно в РФ имеем следующие не перекрывающиеся каналы шириной 20MHz внутри помещений:

1. 5150-5250 MHz
36: 5180 MHz
40: 5200 MHz
44: 5220 MHz
48: 5240 MHz (данный канал эффективен при условии задействования следующей полосы)

2. 5250-5350 MHz (уточняйте возможность использования данной полосы)
52: 5260 MHz
56: 5280 MHz
60: 5300 MHz
64: 5320 MHz

 За счет более редкого использования и больших количеств каналов точки Wi-Fi, скорость работы Wi-Fi увеличивается. Но для использования 5ГГц необходимо что бы не только Wi-Fi источник (роутер) работал на этой частоте, но и само устройство (ноутбук, планшет, телефон, телевизор). Минус использования 5ГГц это дороговизна оборудования, в сравнении с устройствами работающими на частоте 2,4 ГГц и меньшая дальность действия в сравнении с частотой 2,4 ГГц.

Я очень надеюсь, моя статья помогла Вам! Просьба поделиться ссылкой с друзьями:

Что такое WiFi? Подробно о свойствах WiFi сигнала

на картинке: графическое отображение WiFi волн в городе.

1. Что такое WiFi?

1.1. Связь частоты и длины волны.

2. Свойства WiFi сигнала.

2.1. Поглощение.

2.2. Огибание препятствий.

2.3. Естественное затухание.

2.4. Отражения сигнала.

2.5. Плотность данных.

2.6. Почему сложно дать однозначный ответ: на какое расстояние будет передавать сигнал WiFi оборудование?

3. Диапазоны и частоты WiFi

3.1. Диапазон 2,4 ГГц.

3.2. Диапазон 5 ГГц.

Что такое WiFi?

WiFi — беспроводной способ связи, основанный на всем нам знакомом электромагнитном излучении. Сигнал WiFi относят к радиоволнам, соответственно, он имеет такие же свойства, характеристики и поведение. Радиоволны, в свою очередь, подчиняются практически тем же физическим законам, что и свет: распространяются в пространстве с такой же скоростью (почти 300 000 километров в секунду), подвержены дифракции, поглощению, затуханию, рассеиванию и т. д.

Основные характеристики радиоволны, а значит и сигнала WiFi — это ее длина и частота (частотный диапазон). Последний параметр означает частоту переменного тока, необходимую для получения волны нужной длины и используется для классификации радиоволн. Другое определение частоты — это количество волн, проходящих через определенную точку пространства в секунду.

Существует распределение радиоволн по диапазонам, в зависимости от частоты, утвержденная Международным союзом электросвязи (МСЭ, английская аббревиатура — ITU).

Буквенные

обозначения

диапазона

Название волн.

Название частот.

Диапазон частот

Диапазон

длины волны

ОНЧ (VLF)Мириаметровые. Очень низкие3—30 кГц100–10 км
НЧ (LF)Километровые. Низкие. 30—300 кГц10–1 км
СЧ (MF)Гектометровые. Средние.300—3000 кГц1–0.1 км
ВЧ (HF)Декаметровые. Высокие.3—30 МГц100–10 м
ОВЧ (VHF)Метровые. Очень высокие.30—300 МГц10–1 м
УВЧ (UHF)Дециметровые. Ультравысокие.300—3000 МГц1–0.1 м
СВЧ (SHF)Сантиметровые. Сверхвысокие.3—30 ГГц10–1 см
КВЧ (EHF)Миллиметровые. Крайне высокие.30—300 ГГц10–1 мм
THFДециметровые. Гипервысокие.300—3000 ГГц1–0.1 мм

Сфера применения радиоволн зависит от частотного диапазона. Это может быть  телевидение, радиосвязь, мобильная связь, радиорелейная связь и т. д. Вообще, радиочастотный эфир занят довольно плотно: использование всех диапазонов буквально расписано:

В том числе это и беспроводная связь WiFi. Для нее используются дециметровые и сантиметровые волны ультравысокой и сверхвысокой частоты (УВЧ и СВЧ) в частотных диапазонах 2,4 ГГц, 5 ГГц и  и других редкоиспользуемых: 900 МГц, 3,6 ГГц, 10 ГГц, 24 ГГц.

Главное преимущество WiFi-связи отражено во втором ее названии — беспроводная связь. Именно отсутствие проводов вкупе со все возрастающей скоростью передачи данных является ключевым моментом при выборе этого способа соединения.

Если речь идет о домашних пользователях — беспроводная связь удобна, она позволяет не привязываться к определенному месту в квартире для входа в интернет.

Если мы говорим о корпоративной связи, о провайдерских услугах, то иногда прокладка кабеля для передачи данных — это дорого, нецелесообразно или вообще невозможно. Например, нужно раздать интернет в частном секторе, прокинуть магистральный канал через ущелье, в удаленный населенный пункт и т. д. В этом случае на выручку приходит WiFi. Проблемная территория преодолевается с помощью беспроводного канала.

Связь частоты сигнала WiFi и длины волны

Характеристики длины волны сравнительно редко используются в параметрах оборудования WiFi. Однако иногда, для понимания физических свойств и поведения сигнала беспроводной связи в различных условиях неплохо разбираться в связи частоты и длины радиоволн.

Общее правило: Чем выше частота, тем короче длина волны. И наоборот.

Формула для расчета длины волны:

Длина волны WiFi сигнала (в метрах)= Скорость света (в м/сек) / Частота сигнала (в герцах).

Скорость света в м/сек = 300 000 000.

После упрощения формулы получаем: Длина волны в метрах = 300/ Частота в МГц.

Свойства WiFi сигнала

 Поглощение.

Главное условие для создания беспроводного линка  на расстояние большее, чем сотня метров — прямая видимость между точками установки оборудования. Проще говоря, если мы стоим рядом с одной точкой доступа WiFi, то наш взгляд, направленный в сторону второй точки, не должен упираться в стену, лес, многоэтажный дом, холм и т. д. (Это еще не все, нужно также учитывать помехи в Зоне Френеля, но об этом в другой статье.)

Такие объекты просто-напросто отражают и поглощают сигнал WiFi, если не весь, то львиную его часть.

То же самое происходит и в помещении, где сигнал от WiFi роутера или точки доступа проходит через стены в другие комнаты/на другие этажи. Каждая стена или перекрытие «отбирает» у сигнала некоторое количество эффективности.

На небольшом расстоянии, например, от комнатного роутера до ноута, у радиосигнала еще есть шансы, преодолев стену, все-таки добраться до цели. А вот на длинной дистанции в несколько километров любое такое ослабление существенно сказывается на качестве и дальности WiFi связи.

Процент ухудшения сигнала вай-фай при прохождении через препятствия зависит от нескольких факторов:

  • Длины волны. В теории, чем больше длина волны (и ниже частота вай-фай), тем больше проникающая способность сигнала. Соответственно, WiFi в диапазоне 2,4 ГГц имеет большую проникающую способность, чем в диапазоне 5 ГГц. В реальных условиях выполнение этого правила очень тесно зависит от того, через препятствие какой структуры и состава проходит сигнал.
  • Материала препятствия, точнее, его диэлектрических свойств.

Преграда

Дополнительные потери при прохождении (dB)

Процент эффективного расстояния*, %

Открытое пространство

0

100

Нетонированное окно (отсутствует металлизированное покрытие)

3

70

Окно с металлизированным покрытием (тонировкой)

5-8

50

Деревянная стена

10

30

Стена 15,2 см (межкомнатная)

15-20

15

Стена 30,5 см (несущая)

20-25

10

Бетонный пол или потолок

15-25

10-15

Цельное железобетонное перекрытие

20-25

10

* Процент эффективного расстояния — эта величина означает, какой процент от первоначально рассчитанной дальности (на открытой местности) сможет пройти сигнал после преодоления препятствия.

Например, если на открытой местности дальность сигнала Wi-Fi  — до 200 метров, то после прохождения через нетонированное окно она уменьшится до 140 метров (200 * 70% = 140). Если следующим препятствием для этого же сигнала станет бетонная стена, то после нее дальность составит уже максимум 21 метр (140*15%).

Отметим, что вода и металл — самые эффективные поглотители WiFi, т. к. являются электрическими проводниками и «забирают» на себя большое количество энергии сигнала. Например, если дома на пути вай-фай от роутера до вашего ноута стоит аквариум, то практически наверняка соединения не будет.

Именно поэтому во время дождя и других «влажных» атмосферных осадков наблюдается небольшое снижение качества беспроводного соединения, поскольку капли воды в атмосфере поглощают сигнал.  

Частично этот фактор влияет и на затухание WiFi передачи в листве деревьев, т. к. они содержат большой процент воды.

  • Угла падения луча на препятствие. Помимо материала преграды, через которую проходит сигнал вай-фай, важен также угол падения луча. Так, если сигнал проходит через препятствие под прямым углом, это обеспечит меньшие потери, чем если бы он падал на него под углом 45 градусов. Еще хуже, если сигнал проходит через преграду под очень острым углом. В этом случае, грубо говоря, можно смело умножать толщину стены на 10 и рассчитывать потери WiFi передачи согласно этой величине.

Огибание препятствий.

По-научному это поведение луча WiFi называется дифракцией, хотя на самом деле понятие дифракции гораздо сложнее, чем простое «огибание препятствий».

 В общем можно вывести правило — чем короче длина волны (выше частота), тем хуже она огибает препятствия.

Основывается это правило на известном физическом свойстве волны: если размер препятствия меньше, чем длина волны, то она его огибает. В целом отсюда логично проистекает, что чем короче длина волны, тем меньшее остается вариантов препятствий, которые она может в принципе обойти, и поэтому принимается, что ее огибающая способность хуже.

Огибание на практике означает меньшее рассеивание волны как луча энергии вокруг препятствия, меньшее количество потерь сигнала.

Возьмем популярные частоты 2,4 ГГц (длина волны 12,5 см) и 5 ГГц (длина волны 6 см). Мы видим подтверждение правила на примере прохождения лесного массива. Стандартные размеры листьев, стволов, веток деревьев, в среднем будут меньше, чем 12,5 см, но больше, чем 6 см. Поэтому сигнал WiFi 5 ГГц диапазона при прохождении через густую листву “потеряется” практически полностью, в то время как 2,4 ГГц справится лучше.

Поэтому WiFi оборудование, работающее в диапазоне 900 МГц, используется в условиях отсутствия прямой видимости сигнала — его длина волны составляет 33,3 см, что позволяет огибать большее количество преград. Однако надо учитывать размеры предполагаемых препятствий и понимать, что сигнал 900 МГц не сможет “обойти” бетонную стену, расположенную перепендикулярно направлению сигнала. Здесь уже сыграют роль проникающие способности волны, которые, как мы уже говорили у сигналов с низкой частотой довольно неплохие.

Также именно поэтому для нормальной работы беспроводного оборудования, использующего частоту 24ГГц (длина волны 1,25 см) необходима абсолютно чистая видимость, потому что все препятствия больше сантиметра будут отражать и поглощать сигнал.

Как мы уже упоминали, в отношении прохождении сигнала через лесной массив играет роль также содержание воды в листьях, а также длина волны.

Естественное затухание.

Как далеко мог бы передаваться сигнал WiFi, если создать ему идеальные условия прямой видимости? В любом случае не бесконечно, потому что чем больше дальность беспроводного “пролета”, тем больше сигнал затухает сам по себе. Происходит это по 2 причинам:

  • Земная поверхность поглощает часть энергии сигнала. Чем выше частота WiFi, тем интенсивнее идет поглощение.

  • Сигнал WiFi даже из самой узконаправленной антенны распространяется не прямой линией, а лучом. Соответственно, чем дальше расстояние, тем шире становится луч, тем меньшая мощность сигнала приходится на единицу площади, и тем меньше энергии сигнала попадает в принимающую антенну.

Отражения сигнала.

Сигнал WiFi, как любая радиоволна, как свет, отражается от поверхностей и ведет себя при этом аналогично. Но тут есть нюансы — какие-то поверхности будут поглощать сигнал (полностью или частично), а какие-то — отражать (полностью или частично). Это зависит от материала поверхности, его структуры, наличия неровностей на поверхности и частоты WiFi.

Неконтролируемые отражения сигнала ухудшают его качество. Частично — из-за потери общей энергии сигнала (до принимающей антенны, упрощенно говоря, “долетает не всё” или долетает после переотражений, с задержками). Частично — из-за интерференции с негативным влиянием, когда волны накладываются в противофазе и ослабляют друг друга.

Интерференция может иметь и положительное влияние, если волны WiFi накладываются друг на друга в одинаковых фазах. Это часто используется для усиления мощности сигнала.

Плотность данных.

Частота WiFi влияет также на еще один важный параметр — объем передаваемых данных. Здесь существует прямая связь — чем выше частота, тем больше данных в единицу времени можно передать. Возможно, именно поэтому первая высокопроизводительная РРЛ от Ubiquiti  — AirFiber 24, а также ее более мощная модификация — Airfiber 24HD были выпущены на частоте 24 ГГц.

Почему сложно дать однозначный ответ: на какое расстояние будет передавать сигнал WiFi оборудование?

Физические свойства и поведение радиоволны в окружающем мире довольно сложны. Нельзя взять какой-то один параметр и по нему рассчитать дальность беспроводного сигнала. В каждом конкретном случае на дальность будут оказывать влияние различные факторы окружающей среды:

  • Поглощение сигнала препятствиями, земной корой, поверхностью водоемов.
  • Дифракция и рассеивание сигнала из-за преград на пути.
  • Отражения сигнала от препятствий, земли, воды и возникающие в результате этого интерференции волны.
  • На больших расстояниях — радиогоризонт, т. е. искривление земной коры.
  • Зона Френеля и, соответственно — высота расположения оборудования над поверхностью земли.

Именно поэтому реальная дальность оборудования, как, впрочем, и пропускная способность, может очень сильно отличаться в различных условиях.

Диапазоны и частоты WiFi

Как мы уже сказали, для WiFi связи выделено несколько разных частотных диапазонов:  900 МГц, 2,4 ГГц, 3,65 ГГц, 5 ГГц, 10 ГГц, 24 ГГц. 

В Украине на данный момент чаще всего применяются точки доступа WiFi и антенны WiFi 2,4 ГГц и 5ГГц.

Основные отличия 2,4 ГГц и  5ГГц:

2,4 ГГц. Длина волны 12,5 см. Относится к дециметровым волнам ультравысокой частоты (УВЧ).

  • В реальных условиях — меньшая дальность сигнала из-за более широкой зоны Френеля, что чаще всего не компенсируется тем, что сигнал на этой частоте меньше подвержен естественному затуханию.
  • Лучшее преодоление небольших преград, например, густых лесных массивов, благодаря хорошей проникающей способности и огибанию препятствий.
  • Меньше относительно неперекрывающихся каналов (всего 3), а значит, “ пробки на дорогах” — теснота в эфире, и как результат — плохая связь.
  • Дополнительная зашумленность эфира другими устройствами, работающими на этой же частоте, в том числе мобильных телефонов, микроволновок и т. п.

5 ГГц.  Длина волны 6 см. Относится к сантиметровым волнам сверхвысокой частоты (СВЧ).

  • Большее количество относительно неперекрывающихся каналов (19).
  • Большая емкость данных.
  • Большая дальность сигнала, в связи с тем, что Зона Френеля меньше.
  • Такие препятствия, как листва деревьев, стены волны диапазона 5ГГц преодолевают гораздо хуже, чем 2,4.

Диапазоны 900 МГц, 3,6 ГГц, 10 ГГц, 24 ГГц для нас скорее экзотика, однако могут использоваться:

  1. Для работы в условиях, когда стандартные диапазоны плотно заняты.

  2. Если требуется создать беспроводное соединение между двумя точками при отсутствии прямой видимости (лес и другие препятствия). Это касается такой частоты, как 900 МГц (в нашей стране ее нужно использовать с осторожностью, так как на ней работают сотовые операторы).

  3. Если для использования частоты не требуется получать лицензию в контролирующих органах. Такое преимущество часто встречается в презентациях зарубежных производителей, однако для Украины это не совсем актуально, так как условия лицензирования в нашей стране другие.

В IEEE ведутся разработки по принятию новых стандартов и, соответственно, использованию других частот для WiFi. Не исключено, к примеру, что в ближайшее время диапазон 60 ГГц также станет использоваться для беспроводной передачи. Точно также, как и возможна вероятность “отжатия” в будущем некоторых частот, сейчас принадлежащих WiFi, в пользу, например, сотовых операторов.

Какую частоту выбрать в настройках роутера?

Какой диапазон частоты использовать для Wi-Fi — 2,4 или 5 ГГц?

Практически все современные модели роутеров работают на частоте 2,4 и 5 ГГц. Какую частоту выбрать, что лучше?

Почему именно эти дипазоны? Все очень просто — на данный момент это наиболее распространенные частоты, на которых осуществляется беспроводное соединение. Большинство устройств Wi-Fi выпускается именно для 2,4 ГГц или 5 ГГц и стандартов, на которых они основаны.

Для сигнала диапазона 5 ГГц даже деревья, листва и т.д. – существенные помехи. Поэтому для хороших показателей дальности и скорости оборудованию требуется чистая прямая видимость. Отличие частоты 2,4 ГГц в том, что для нее это не так критично.

В то же время по другому параметру – наличию помех в эфире, частота 2,4 ГГц проигрывает. В этом диапазоне работают многие посторонние устройства — микроволновки, телефоны и т.д. – поэтому количество шумов может быть очень существенным.

Основные особенности работы Wi-Fi в диапазоне 5 ГГц и 2,4 ГГц.

  • Чтобы работал Wi-Fi на частоте 5 ГГц, для этого необходимо, чтобы маршрутизатор и приемник поддерживали стандарт 802.11 n или 802.11 ac. Если устройство не поддерживает этот стандарт, то сеть 5 ГГц. работать не будет.
  • У диапазона 5 ГГц обычно стабильный сигнал, но дальность действия меньше по сравнению с 2,4 ГГц. Поэтому Wi-Fi в диапазоне 5 ГГц стоит использовать в помещениях, где он точно достигнет каждой комнаты.
  • Сеть с частотой 5 ГГц не так сильно подвержена помехам. Например, в многоквартирных домах можно найти много беспроводных сетей, которые работают в диапазоне 2,4 ГГц. А вот частота 5 ГГц обычно используется значительно реже.
  • Если Wi-Fi работает нестабильно и слишком медленно, или рядом находится много соседских сетей, вам лучше использовать 5 ГГц.
  • Частота 2,4 ГГц является более загруженной по сравнению с частотой 5 ГГц, устройства на частоте 2,4 ГГц испытывают больше помех, чем устройства на частоте 5 ГГц.
  • С распространением сигнала через стены маршрутизатор с частотой 2,4 ГГц справляется немного лучше. В теории дальность действия сети 2,4 ГГц также выше, но на практике это обычно выглядит по-разному из-за многочисленных помех.
  • Если вы используете много старых устройств, поддержка диапазона 2,4 ГГц также является необходимой, так как не все гаджеты поддерживают 5 ГГц.
  • Из-за небольшого количества каналов (всего 13), в теории в сети 2,4 ГГц есть только 3 канала без перекрытия. Это огромный недостаток по сравнению с сетью 5 ГГц, обеспечивающей до 19 каналов без перекрытия и, таким образом, более отказоустойчивую работу. Кроме того, другие приборы (например, Bluetooth-гаджеты) работают с частотой 2,4 ГГц и тем самым мешают сети.

Важно! В частотном диапазоне 2,4 ГГц обеспечивается бо́льшая площадь покрытия (дальность распространения сигнала или более широкий охват сигнала), чем при использовании диапазона 5 ГГц, но при этом возможна более низкая скорость передачи данных. В диапазоне 5 ГГц обеспечивается меньшая площадь покрытия, чем при использовании диапазона 2,4 ГГц, но выше скорость передачи данных.

Если вы еще не решили какую частоту выбрать, то помните — если вы работаете (к примеру за ноутбуком) и находитесь недалеко от роутера, можно переключиться на сеть 5 ГГц., а если вы находитесь от роутера на большом расстоянии, лучше использовать частоту 2,4 ГГц.

Загрузка…

Частота WiFi. Какую выбрать?

Каждая частота WiFi имеет различные характеристики, в силу физических свойств и сферы применения. Более низкие частоты имеют лучшие характеристики распространения, чем более высокие, и могут лучше работать в условиях затрудненной прямой видимости (деревья и т. д.). Однако эти полосы могут также иметь более высокий уровень шумов и помех, поэтому очень важно выбрать частоту WiFi, что оптимально подходит именно к вашей ситуации.

 

 

900 MHz

Преимущества и недостатки:

Меньшая восприимчивость к деревьям и другим препятствиям в зоне прямой видимости по сравнению с более высокими частотами.
 Обычно более высокий уровень шума.
  Ширина полосы только 26 МГц.
  Применение требует лицензии.
  В Украине это диапазон используется сотовыми операторами, поэтому применять его нужно крайне осторожно.

 

2,4 ГГц

Преимущества и недостатки:

  Не требует лицензии в большинстве стран (в Украине для коммерческого использования лицензия требуется).
  Имеет только три неперекрывающихся канала шириной 20 МГц (1, 6, 11).
  Это очень переполненный канал: много помех от телефонов, домашних беспроводных роутеров, других WiFi услуг.
Использование 40 МГц каналов не рекомендовано.

 

3.x ГГц

Преимущества и недостатки:

  Ширина полосы 300 МГц в странах, где 3.4-3.7 Ггц диапазон свободен.
  Отсутствие помех в большинстве районов.
  Ширина полосы только 25 МГц в странах, где используется 3,65 Ггц.
  Требует лицензирования.

 

5 ГГц

Преимущества и недостатки:

  В большинстве стран лицензия не требуется.
  Увеличенные пределы ЭИИМ позволяют применять антенны с более высоким коэффициентом усиления и покрывать дальние дистанции.
  Большой объем доступного спектра, легче найти ближайшие совместимые устройства.
  При наличии препятствий (деревья, стены и т. д.) сигнал быстрее затухает и в этом уступает более низким частотам.

 

10 ГГц

Преимущества и недостатки:

 Отсутствие помех в большинстве случаев, что очень полезно, когда диапазон 5,8 ГГц переполнен.
 Очень маленькая зона Френеля.
 Доступна только в некоторых регионах.
 Лицензируемая  частота.
 Требуется идеальная линия прямой видимости.

Какой диапазон Wi-Fi лучше использовать: 2,4 или 5 ГГц?

Наверх

  • Рейтинги
  • Обзоры

    • Смартфоны и планшеты
    • Компьютеры и ноутбуки
    • Комплектующие
    • Периферия
    • Фото и видео
    • Аксессуары
    • ТВ и аудио
    • Техника для дома
    • Программы и приложения
  • Новости
  • Советы

    • Покупка
    • Эксплуатация
    • Ремонт
  • Подборки

    • Смартфоны и планшеты
    • Компьютеры
    • Аксессуары
    • ТВ и аудио
    • Фото и видео
    • Программы и приложения
    • Техника для дома
  • Гейминг

    • Игры
    • Железо
  • Еще

    • Важное
    • Технологии
    • Тест скорости

Насколько точно работает Wi-Fi?

Скорее всего, вы используете сеть Wi-Fi, чтобы прочитать эту статью. Но что это за «волшебство» и как оно работает?

Здесь мы кратко даем обзор Wi-Fi, исследуем его различные типы и обсуждаем его плюсы и минусы. Обратите внимание, что это не исчерпывающее руководство.

СВЯЗАННЫЙ: КАК WIFI 6 ПРЕДНАЗНАЧЕН ДЛЯ РЕВОЛЮЦИИ ИНТЕРНЕТА ВЕЩЕЙ

Как работают системы Wi-Fi?

Wi-Fi или Wireless Fidelity, если дать ему полное название, — это телекоммуникационная технология, которая использует радиоволны для отправки и приема цифровых сигналов и, соответственно, данных.Сокращение Wi-Fi на самом деле является торговой маркой, которая была введена Wi-Fi Alliance для описания технологии, поскольку ее техническое название (IEEE 802.11) было сочтено слишком сложным для потребителей.

Интересно, что Wi-Fi как торговая марка принадлежит Wi-Fi Alliance, некоммерческой организации, которая способствует развитию технологий и продуктов Wi-Fi.

Wi-Fi, также известный как беспроводная локальная сеть (WLAN), технически известен как IEEE 801.11 технологий. Это набор стандартов для технологии, которые поддерживаются и выпускаются Институтом инженеров по электротехнике и радиоэлектронике (IEEE) и используются для реализации связи WLAN в выбранных диапазонах частот.

Wi-Fi в основном используется для обеспечения доступа в Интернет для всех и всех устройств, подключенных к сети Wi-Fi.

Самым большим преимуществом Wi-Fi по сравнению с более традиционными формами телекоммуникационного соединения является тот факт, что он не требует подключения устройств с помощью проводов — отсюда и название.

Технология основана, как уже упоминалось ранее, на передаче и приеме радиоволн, электромагнитных волн с частотами в диапазоне гигагерц.

Данные преобразуются маршрутизатором или беспроводным адаптером для отправки или приема радиоволн Wi-Fi. Когда этот закодированный радиосигнал принимается маршрутизатором или адаптером, он декодируется обратно в исходные данные.

Это двусторонний процесс, при котором беспроводной адаптер и маршрутизатор работают в тандеме для кодирования и декодирования радиосигналов Wi-Fi в мгновение ока для передачи данных между устройствами.

Частоты, используемые Wi-Fi, значительно отличаются от частот других «беспроводных» технологий, таких как автомобильные радиоприемники, портативные рации или сотовые телефоны. Например, автомобильные стереосистемы работают на частотах килогерцового или мегагерцевого диапазона (AM и FM).

Герц, если вы не знаете, это единица измерения частоты — или временной интервал между каждым пиком / пиком в электромагнитной волне. Чем выше частота, тем ближе пики и впадины электромагнитных волн.

Для сравнения: 1 Гц — это примерно 1 цикл в секунду или 1 секунда между каждым гребнем волны.

«Сравнивая морские волны с МГц и ГГц, эти волны движутся с частотой 1 миллион и 1 миллиард циклов в секунду в воздухе! И для получения информации, содержащейся в этих волнах, ваш радиоприемник должен быть настроен на принимать волны определенной частоты.

Для Wi-Fi эта частота составляет 2,4 ГГц и 5 ГГц . Эти волны очень похожи на частоту вашей микроволновой печи! Ваша микроволновая печь использует 2,450 ГГц для разогрева пищи а ваш маршрутизатор использует 2.От 412 ГГц до 2,472 ГГц для передачи данных по Wi-Fi. Вот почему у некоторых людей со старыми или неисправными микроволновыми печами возникают проблемы с сигналом Wi-Fi, когда они пытаются приготовить попкорн ». — Scientific American.

Источник: Pixabay

Какие частоты используют сигналы Wi-Fi?

Как Ранее упоминалось, что сети Wi-Fi, как правило, работают на частоте 2,4 или 5 ГГц . Обычно это адаптируется в зависимости от объема данных, отправляемых пользователем.

IEEE 802.11 устанавливает следующие стандарты для типов Wi-Fi: —

  • 802.11a — это стандарт, используемый для обозначения использования частот 5 ГГц . Это позволяет передавать до 54 мегабит в секунду. Он использует сложную технику, известную как OFDM (мультиплексирование с ортогональным частотным разделением) для генерации беспроводного сигнала.
  • 802.11b передает данные с частотой около 2,4 ГГц . Это на «более медленном» конце скорости передачи данных Wi-Fi и обычно достаточно для передачи около 11 мегабит в секунду.Он имеет радиус действия до 150 футов (46 метров) и сегодня в значительной степени избыточен.
  • 802.11g передает данные также на 2,4 ГГц , но может обеспечить передачу максимум 54 мегабит в секунду. Он использует тот же OFDM, что и 802.11b, и обратно совместим со старыми стандартами.
  • Более новый стандарт 802.11n может передавать 140 мегабит (, хотя теоретически поддерживает скорость от до 450 Мбит / с) и работает на частоте 5 ГГц., представленный в 2009 году, также называется Wi-Fi 4. В этом стандартном использовании используется MIMO (несколько входов, несколько выходов), когда несколько передатчиков / приемников работают одновременно на одном или обоих концах канала.
  • 802.11ac , или Wi-Fi 5, является одним из новейших пакетов и имеет скорость передачи данных от 433 Мбит / с до 1 гигабит в секунду. Он работает исключительно в диапазоне 5 ГГц и может поддерживать до восьми пространственных потоков. Он также использует технологию MIMO, представленную в 802.11н.
  • 802.11ax (Wi-Fi 6) — это новейшая итерация, которая обещает изменить правила игры.

Плюсы и минусы Wi-Fi

У Wi-Fi есть ряд ключевых преимуществ и недостатков. Они включают, но не ограничиваются: —

Pros

  • Повышенная эффективность — Более быстрое подключение обеспечивает быструю передачу данных.
  • Доступ и доступность — Возможность общаться без проводов означает, что Wi-Fi обеспечивает очень удобный метод передачи данных.
  • Гибкость — Работа в сети невероятно проста и универсальна. с помощью Wi-Fi.
  • Экономия затрат — Беспроводные сети обычно дешевле и проще в установке.
  • Новые возможности — Wi-Fi позволил многим компаниям предложить новые возможности для своих сотрудников и клиентов. Например, доступ в Интернет в кафе, отелях, аэропортах и ​​т. Д.

Минусы

  • Безопасность — Wi-Fi более подвержен несанкционированному доступу, чем некоторые более традиционные сетевые методы.
  • Проблемы при установке — Сигналы Wi-Fi могут прерываться, если многие пользователи подключены к другим источникам или присутствуют другие радиосигналы. Это может привести к ухудшению связи или даже к полной потере сигнала.
  • Покрытие — Сети Wi-Fi часто страдают от «черных пятен», где сигнал недоступен. Обычно это связано с природой конструкции здания, например армированные сталью строительные материалы могут блокировать сигналы Wi-Fi.
  • Скорость передачи — Передача данных может быть медленнее или менее эффективна, чем проводные решения.

Чем отличается Интернет от Wi-Fi?

Вы, наверное, уже разобрались с этим, но хотя термины иногда используются как синонимы, это совершенно разные вещи. Wi-Fi — это форма связи, при которой данные передаются по беспроводной сети с помощью радиоволн.

Это позволяет устройствам подключаться вместе локально без необходимости подключения к Интернету. Например, рассмотрим принтер с поддержкой Wi-Fi.

Вы можете отправлять и распечатывать документы со своего компьютера без необходимости подключения к Интернету.

Интернет, с другой стороны, представляет собой глобальную сеть компьютеров, которые используют набор протоколов Интернета (TCP / IP) для соединения устройств по всему миру.

.

Что такое Wi-Fi и как он работает?

Последнее обновление , автор: David Webb
.

WiFi — это технология, использующая радиоволны для обеспечения сетевого подключения. Соединение устанавливается с помощью беспроводного адаптера для создания точек доступа — областей в непосредственной близости от беспроводного маршрутизатора, которые подключены к сети и позволяют пользователям получать доступ к интернет-службам. Эта статья познакомит вас с основами WiFi , чтобы вы могли лучше понять свой доступ в Интернет.

Что означает WiFi?

Вы можете быть удивлены, узнав, что многие люди на самом деле не знают, что WiFi — это сокращенный термин. Существует ряд теорий о том, что означает этот термин, но наиболее широко используемым определением этого термина в техническом сообществе является Wireless Fidelity .

Знакомство с WiFi

В наши дни беспроводная технология очень популярна, и вы можете подключиться практически в любом месте; дома, на работе, в библиотеках, школах, аэропортах, отелях и даже в кафе и ресторанах.

Беспроводная сеть известна как сеть Wi-Fi или 802.11, поскольку она охватывает технологии IEEE 802.11. Основным преимуществом Wi-Fi является то, что он совместим практически со всеми операционными системами, игровыми устройствами и продвинутыми принтерами.

Как работает WiFi

Как и в мобильных телефонах, сеть Wi-Fi использует радиоволны для передачи информации по сети. Компьютер должен включать беспроводной адаптер, который будет преобразовывать данные, отправленные в радиосигнал. Этот же сигнал будет передан через антенну на декодер, известный как маршрутизатор .После декодирования данные будут отправлены в Интернет через проводное соединение Ethernet.

Поскольку беспроводная сеть работает как двусторонний трафик, данные, полученные из Интернета, также проходят через маршрутизатор и кодируются в радиосигнал, который будет приниматься беспроводным адаптером компьютера.

Частоты WiFi

Беспроводная сеть будет передавать на уровне частоты 2,4 ГГц или 5 ГГц, чтобы адаптироваться к количеству данных, отправляемых пользователем. Модель 802.11 сетевых стандартов будут несколько отличаться в зависимости от потребностей пользователя.

802.11a будет передавать данные на уровне частоты 5 ГГц. Используемое мультиплексирование с ортогональным частотным разделением каналов (OFDM) улучшает прием, разделяя радиосигналы на более мелкие сигналы, прежде чем они достигнут маршрутизатора. Вы можете передавать максимум 54 мегабита данных в секунду.

802.11b будет передавать данные на уровне частоты 2,4 ГГц, что является относительно низкой скоростью.Вы можете передавать максимум 11 мегабит данных в секунду.

802.11g будет передавать данные на частоте 2,4 ГГц, но может передавать максимум 54 мегабита данных в секунду, поскольку он также использует кодирование OFDM.

Более продвинутая модель 802.11n может передавать до 140 мегабит данных в секунду и использует уровень частоты 5 ГГц.

Вот подробное руководство по новейшей технологии Wi-Fi 6 и более подробное объяснение различных типов Wi-Fi.

Что такое точки доступа?

Термин точка доступа используется для обозначения зоны, где доступен доступ Wi-Fi. Это может быть либо через закрытую беспроводную сеть дома, либо в общественных местах, таких как рестораны или аэропорты.

Для доступа к точкам доступа на вашем компьютере должен быть установлен беспроводной адаптер . но большинство моделей ноутбуков в 2020 году уже имеют встроенный беспроводной передатчик. Если это не так, вы можете приобрести беспроводной адаптер, который будет вставляться в слот PCI или USB-порт.После установки ваша система должна автоматически определять точки доступа Wi-Fi и запрашивать соединение. Если нет, вам следует использовать программное обеспечение для выполнения этой задачи за вас, пример которого вы можете найти здесь.

Подключиться к WiFi через модем

Чтобы установить соединение с беспроводным маршрутизатором, вы должны сначала убедиться, что он подключен к точке подключения к Интернету. Включите внешний модем перед подключением маршрутизатора к компьютеру через кабель Ethernet. Затем включите беспроводной маршрутизатор и откройте интернет-браузер.

Вам будет предложено ввести IP-адрес маршрутизатора. Этот IP-адрес будет отличаться в зависимости от используемой вами службы. Пользователи Belkin должны ввести http://192.168.2.1 .. Если вы являетесь пользователем Linksys , введите http://192.168.1.1.

Теперь введите имя пользователя и пароль вашего роутера. Установите SSID (возможность беспроводной связи) как активный , а затем введите имя пользователя и пароль, предоставленные вашим интернет-провайдером, и выберите безопасность WEP или WPA .

Выберите новый ключ доступа, чтобы завершить настройку WiFi.

Изображение: © Pixabay.

.

Как работает WiFi? | Вондрополис

«Сегодняшнее чудо дня» навеяно Эшли из Далласа, штат Техас. Эшли Уандерс , « Как работает Wi-Fi? ”Спасибо за ЧУДО с нами, Эшли!

Сколько раз вы сегодня пользовались Интернетом? Считайте каждый раз, когда вы используете смартфон, планшет или компьютер. Добавьте к этому любые телепередачи или фильмы, которые вы транслировали.Спорим, вы сбились со счета!

Здесь, в Вондрополисе, Интернет — часть нашей повседневной жизни. Однако так было не всегда. Разработчики создали Wi-Fi в начале 1990-х годов, но он не был доступен в домах до 1999 года. После этого он получил широкое распространение в школах и на предприятиях. Сегодня многие считают Wi-Fi необходимостью!

Большинство людей используют Wi-Fi ежедневно, но многие из нас не знают, как это работает. Это менее сложно, чем вы думаете. Вы когда-нибудь пользовались рацией или мобильным телефоном? Как и эти устройства, Wi-Fi использует радиоволны для отправки информации.

Не волнуйтесь, вы не повредите Wi-Fi в вашем доме, используя свой мобильный телефон! Это потому, что сотовые телефоны и Wi-Fi используют разные частоты, чтобы не мешать друг другу. Частота — это скорость радиоволн, которую использует устройство.

Мы измеряем частоту в герцах (Гц), как и расстояние в милях. Каждый герц — это одна радиоволна в секунду. Мегагерц (МГц) равен одному миллиону герц, а гигагерц (ГГц) — одному миллиарду герц. Более высокие частоты отправляют больше данных в секунду, поэтому устройства используют разные частоты в зависимости от объема данных, которые им нужно отправить.

Например, рации работают на частоте 462 МГц. Большинство сотовых телефонов используют 800 МГц. Ваш домашний WiFi-роутер работает на частоте 2,4 или 5 ГГц, что означает 2,4 или 5 МИЛЛИАРД волн в секунду. Быстро!

Так как же Wi-Fi приведет вас в Вондрополис? Когда вы сообщаете своему компьютеру, куда хотите отправиться, он отправляет эту информацию маршрутизатору, используя назначенную ему частоту. Затем маршрутизатор находит веб-сайт Wonderopolis и отправляет его обратно на ваш компьютер. Это происходит каждый раз, когда вы нажимаете на новое чудо!

Благодаря Wi-Fi информация летит со скоростью миллиарды волн в секунду.Тем не менее, разработчики ежедневно вносят новые улучшения в WiFi. Что будет следующим большим прорывом в интернет-технологиях?

Стандарты:

4-PS4-3, MS-PS4-3, PS4.A, PS4.C

.

Как работает WiFi?

Бывали ли у вас моменты, когда вы отступали и думали о том, как на самом деле работает то, что вы используете каждый день? В частности, задумывались ли вы, как эти чертовы компьютеры на самом деле обмениваются данными по беспроводной сети?

Что ж, это именно тот вопрос, которым мы собираемся заняться в сегодняшнем подкасте. >

Что такое Wi-Fi?

Во-первых, давайте рассмотрим некоторые основы. WiFi означает Wireless Fidelity и означает то же самое, что и WLAN, что означает «Беспроводная локальная сеть».»

См. Также: Как усилить сигнал WiFi (часть 1)

WiFi работает по тому же принципу, что и другие беспроводные устройства — он использует радиочастоты для передачи сигналов между устройствами. Радиочастоты совершенно разные, скажем, от раций, автомобильных радиоприемников, сотовых телефонов и метеорологических радиоприемников. Например, ваша автомобильная стереосистема принимает частоты в диапазоне килогерц и мегагерц (станции AM и FM), а WiFi передает и принимает данные в диапазоне гигагерц.

Если говорить еще больше, герц (Гц) — это просто единица измерения частоты.Предположим, вы стоите на пирсе и смотрите, как набегают волны. Когда вы смотрите на волны, вы можете видеть гребень каждой волны, которая проходит мимо. Если вы посчитаете, сколько секунд между каждым гребнем волны, это будет частота волн. Таким образом, если время между каждым пиком составляло 1 секунду, это означало бы, что частота волны составляла 1 герц или один цикл в секунду.

Если сравнивать морские волны с МГц и ГГц, эти волны движутся в воздухе со скоростью 1 миллион и 1 миллиард циклов в секунду! А чтобы получать информацию, содержащуюся в этих волнах, ваш радиоприемник должен быть настроен на прием волн определенной частоты.

Для Wi-Fi эта частота составляет 2,4 ГГц и 5 ГГц. Эти волны очень похожи на частоту вашей микроволновой печи! Ваша микроволновая печь использует 2,450 ГГц для разогрева пищи, а ваш маршрутизатор использует 2,412–2,472 ГГц для передачи данных по Wi-Fi. Вот почему у некоторых людей со старыми или неисправными микроволновыми печами возникают проблемы с сигналом Wi-Fi, когда они пытаются приготовить попкорн.

Чтобы развеять популярное заблуждение: эти микроволны не ионизирующие излучение. Это означает, что они не вызывают рак.Правильно, детки, микроволновые печи не сделают вас радиоактивными и не светятся в темноте!

Как работает WiFi?

Я уже упоминал, что WiFi использует частоты как 2,4 ГГц, так и 5 ГГц. Обычно более старые устройства имеют только 2,4 ГГц, потому что это было стандартом до выхода 5 ГГц.

См. Также: Как усилить сигнал WiFi (часть 2)

Но независимо от того, находитесь ли вы в диапазоне 2,4 ГГц или 5 ГГц, ваш маршрутизатор будет использовать набор каналов.Эти каналы немного отличаются друг от друга по частоте, и они позволяют нескольким маршрутизаторам обмениваться данными в одной и той же области, не вызывая большого трафика. Просто представьте себя едущим по автостраде — если бы была только одна полоса, это привело бы к пробке; но с многополосным движением движение идет ровно.

Вы, наверное, заметили, что вам не нужно беспокоиться о настройке каналов или других вещах при подключении к Wi-Fi. Это потому, что это обычно настраивается автоматически при подключении маршрутизатора.Ваш компьютер и маршрутизатор проработают детали между ними.

Страницы

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *