Разное

Скорость памяти: Все об оперативной памяти — гайд и тесты в разных режимах работы | Оперативная память | Блог

Содержание

Все об оперативной памяти — гайд и тесты в разных режимах работы | Оперативная память | Блог

Сколько оперативки нужно для современных игр, как правильно подобрать и установить несколько планок? А разгон, а точно хорошо все будет? В этом материале подробно разбираем все вопросы про оперативную память и проводим сравнительные тесты. Информация актуальна как для DDR3, так и для DDR4 и ориентирована на наиболее распространенные платы с двухканальным режимом работы.

Варианты установки памяти

Первый шаг к стабильной и быстрой памяти — ее правильная установка. Просто старайтесь держать в уме следующие факты.

Установка одной, двух, трех или четырех планок — что лучше?

Для оптимального быстродействия ставить лучше четное количество планок памяти. Следующий график показывает, как меняется производительность в зависимости от количества установленных модулей. Дополнительно в него были добавлены два значения: комбинация из 4 ГБ и 8 ГБ модулей на частоте 1333 и 1600 МГц. Command Rate установлен на единицу.

Какой вывод можно сделать? Одна планка памяти выдает худшую производительность, так как отсутствует двухканальный режим. Две планки дают стандартную производительность. Три планки хуже, чем две, потому что контроллеру приходится работать одновременно с двухканальным и одноканальным режимами, а ваша система не может знать наверняка, когда какой требуется. Четыре планки выдают чуть большую производительность (всего на 1-2 %), чем две, но не за счет увеличенной емкости, а за счет количества модулей, так как у контроллера в распоряжении появляется больше банков памяти, к которым можно обратиться (аналогично ранговости).

Как правильно установить две планки памяти, если у материнской платы четыре слота?

Если у вас четыре или более слотов под ОЗУ на материнской плате, тогда знайте, что они разделены на пары и обычно окрашены в разные цвета. Например, первая пара черная, а вторая красная. Распространенная ошибка, когда две планки ставят рядом в разные пары. Это приводит к тому, что память будет работать в одноканальном режиме и выдавать вдвое меньшую скорость копирования, чем она могла бы быть. По этой же причине, когда ограничен бюджет, рекомендуют купить две планки по 4 ГБ, а не одну на 8 ГБ. Проверить, какой режим работы используется у вас в данный момент, можно с помощью программы CPU-Z.

Существуют также гибридные материнские платы, которые имеют слоты как DDR3, так и DDR4 (или DDR2 + DDR3 на старых платах) одновременно. Память разных поколений вкупе использовать нельзя, компьютер просто не запустится.

Можно ли ставить память с разной частотой или разными таймингами вместе?

Оперативную память с разной частотой и разными таймингами можно использовать вкупе. В этом случае все модули заработают на параметрах более слабого. Обычно никаких конфликтов это не создает.

Можно ли ставить память c разной емкостью вместе?

Оперативную память разного объема тоже можно ставить вместе. В этом случае часть памяти работает в двухканальном режиме, а часть — в одноканальном. На практике это дает небольшой прирост производительности, но до полноценного двухканального режима немного не дотягивает. В редких случаях материнская плата может не поддерживать такой комбинированный режим работы, и включится одноканальный. Тесты смотрите в начале раздела.

Можно ли ставить память с разной ранговостью вместе?

Совмещать одноранговую и двухранговую памяти парой в двухканальный режим не рекомендуется, так как это может приводить к вылету системы. Опять же, все зависит от вашей материнской платы. А вот поставить две разные пары можно — если первая пара модулей будет двухранговой, а вторая — однораноговой, то все должно быть нормально. Более подробно об этом параметре смотрите в разделе характеристик.

Максимальный объем: сколько можно поставить?

У каждой материнской платы есть свои ограничения: максимальный поддерживаемый объем памяти и допустимая емкость одного модуля. Необходимо смотреть спецификации:

Видим, что материнка имеет 4 слота и поддерживает до 32 ГБ памяти. Простым делением узнаем, что максимальный объем одного модуля равен 8 гигабайтам.

Если попытаться поставить 16-гигабайтный модуль в плату, которая поддерживает только 8-гигабайтный, то компьютер либо не запустится, либо увидит только часть памяти.


По причине всяческих мелких нюансов и возможных несовместимостей лучший вариант —покупка четного количества совершенно одинаковых модулей памяти, которые нередко продаются комплектом, и их последующая установка парами, то есть в слоты одинакового цвета. Если вы планируете апгрейд, то попытайтесь найти в продаже идентичный модуль или же просто продайте старый и купите новую пару.

Теоретически можно намешать все подряд — по худшему сценарию забить три слота памятью с разным объемом, частотой и таймингами, и это заработает. Однако вашей материнской плате придется привести все это дело к общему знаменателю, что наверняка даст ощутимую потерю производительности.

Короче говоря, действуете по обстоятельствам. Не нужно добавлять лишние модули без уверенности в их необходимости. Но и держать всего один модуль в системе тоже не эффективно.

Существуют также трех-, четырех- и шестиканальные материнские платы, но они менее распространены, и для них действуют свои ограничения и особенности, о которых можно прочитать в руководстве пользователя.

Тестовая конфигурация

Все тесты этой статьи будут выполнены при разрешении 1920х1080 и включенной 16-кратной анизотропной фильтрации. По умолчанию использоваться будут только две планки памяти, за исключением тестов, рассчитанных на иное количество. Частота процессора зафиксирована на значении 4,2 ГГц, а Command Rate = 2, если не указано другое.

  • Блок питания: Corsair RM 850W Gold
  • Материнская плата: Asus Maximus VII Hero (BIOS 3201)
  • Процессор: Intel Core i7 4790K
  • Видеокарта: Zotac GeForce GTX 1070 AMP! Extreme
  • Оперативная память: 4 х Kingston HyperX Savage [HX318C9SRK2/8]
  • Системный накопитель: SSD Smartbuy Revival (1) 240 GB
  • Игровой накопитель: Smartbuy Splash (2019) 256 GB
  • Операционная система: Windows 7 SP1 x64

Профили памяти

Как посмотреть поддерживаемые профили памяти?

Если памяти нет у вас на руках, то очевидным вариантом будет просто загуглить маркировку интересующей вас модели и перейти на сайт производителя, почитать обзоры и т. д.

Если память уже установлена в вашем ПК, то можно воспользоваться бесплатной утилитой CPU-Z. Это максимально легкая и простая программа, которая показывает четыре основных профиля (но не все поддерживаемые). Просто выбираем номер слота в разделе SPD и смотрим данные. Можно заметить, что частота (Frequency) отображается какая-то низкая. Дело в том, что DDR обозначает Double Data Rate, то есть двойная скорость передачи данных. Чтобы получить актуальную частоту, вам нужно умножить значение на два.

Также существует и платный аналог — AIDA64. Она не только показывает все профили памяти, но еще и позволяет узнать латентность и пропускную способность.

Что такое JEDEC и XMP?

Это названия профилей вашей оперативной памяти.

JEDEC — стандарт, предлагающий единый базовый набор таймингов для определенной частоты, на которой и заработает ваша память после установки в ПК. Помимо основного профиля, который обычно и указан в характеристиках товара, есть еще несколько дополнительных скрытых. Нужны они для того, чтобы память могла работать и на пониженных частотах, если материнская плата не поддерживает высокие.

XMP — это оверклокерский набор параметров, тщательно протестированный с завода конкретно для вашей модели памяти. Профиль не следует каким-либо стандартам и предлагает наилучшие параметры, выбранные производителем. То есть, выбрав данный профиль в настройках биоса, вы получите легкий и безопасный разгон. В отличие от JEDEC, поддерживается не всеми моделями, нужно смотреть спецификации. Чтобы его активировать, ваша материнская плата тоже должна поддерживать XMP профили.

Пример памяти из конфигурации: ее базовый профиль JEDEC это 1600 МГц с таймингами [11-11-11-28], простым переключением на XMP-1866 частота меняется на 1866 МГц с таймингами [9-10-11-27], то есть мы получаем не только повышенную частоту, но и более низкие задержки, что точно хорошо скажется на производительности системы.

Что будет, если в биосе выставить неподдерживаемый профиль? 

В случае, если вы попытаетесь выставить в биосе частоту, для которой нет профиля у вашей памяти, то произойдет один из трех возможных вариантов:

  1. Материнская плата выставит тайминги от поддерживаемого профиля, максимально близкого к той частоте, что выставили вы.
  2. Материнская плата выставит универсальный оверклокерский набор таймингов, В моем случае это [11-13-13-35], и они подходят для всех частот вплоть до 2400 МГц.
  3. Компьютер попросту не запустится и потребуется сброс настроек.

Тесты профилей в приложениях

Для диаграмм я решил использовать 5 профилей: наихудший JEDEC, родной JEDEC, оба поддерживаемых XMP профиля и разогнанный профиль (OC).

«Сэм», «Резидент» и «Метро» восприняли увеличение скорости памяти равнодушно, так как им полностью хватает ресурсов процессора. А вот «Трекмания» активно умеет использовать только одно ядро, которое загружено на 100 %, поэтому память оказывает ощутимое влияние на частоту кадров. 

Характеристики памяти

Частота

Частота — это величина, показывающая, сколько операций может выполнить память за промежуток времени. Считается одной из главных характеристик наравне с таймингами. Чем она выше — тем лучше.

Следующие графики покажут, насколько сильно будет меняться производительность в зависимости от частоты. Тайминги при этом зафиксированы на отметке [11-13-13-35].

Тайминги

Тайминги памяти — это внутренние задержки, выраженные в тактах, то есть время, по прошествии которого происходят операции, чтения, записи, обработки информации, подачи напряжения и тд. Чем они меньше – тем лучше. В характеристиках обычно указывают только 3 или 4 тайминга, которые оказывают наибольше влияние на производительность, например 11-11-11-28 (Они же “CL”-“tRCD”-“tRP”-“tRAS”).

Помимо основных вышеуказанных таймингов, существует еще более 20, доступных для настройки в биосе. Их ручной разгон абсолютно бессмысленнен. Ради интереса, я решил попробовать выжать из них максимум, базируясь на XMP профиле. Большинство из них удалось снизить на 1-3 такта, что в сумме дало выигрыш… в 0,4 наносекунды. Стоило ли оно того? Определенно нет. Никакого влияния на приложения замечено не было.

В виде исключения выступают “tRFC“ (REF Cycle Time) и “tREFI” (Refresh Interval), разгоном лишь этих двух параметров можно выиграть до 4 наносекунд латентности. Причем первый нужно понижать, а второй наоборот – повышать.

Следующие графики покажут, насколько сильно будет меняться производительность при разных наборах основных таймингов. Частота при этом зафиксирована на отметке 1600 МГц.

Отдельно стоит поговорить о таком «мистическом», параметре как Command Rate. Он может принимать два значения: 1, 2. Несмотря на то, что его приписывают к основным таймингам памяти, к ней самой он отношения не имеет. Это лишь скорость контроллера, который управляет вашей памятью, время, необходимое на преобразование команд.

Как он влияет на стабильность системы — четкого ответа нет, все зависит от качества вашей материнской платы. В интернете часто пишут, что уменьшать этот параметр не рекомендуется, так как память теряет разгонный потенциал и становится нестабильной. Но лично в моей практике не попадался ни один ПК, который бы плохо работал от выставления Command Rate на 1. Более того, в случае тестовой конфигурации на разгонный потенциал это не повлияло ни на йоту.

Разница между CR1 и CR2 может составлять от 0 до 5 % производительности в зависимости от ряда факторов. А если говорить о латентности, то разница составляет 0.5-1.5 наносекунды.

Пропускная способность

Пропускная способность — это скорость работы памяти с данными. То есть объем информации, который память может обработать за секунду времени. Например, 30 гигабайт в секунду.

Вопрос: что лучше — 1 планка на 1600 МГц или 2 планки по 800 МГц? Казалось бы, ответ очевиден, в обоих случаях достигается одинаковая пропускная способность (12 ГБ/сек), но у памяти с частотой 800 МГц ниже тайминги, значит она должна победить. Однако внезапно происходит полный разрыв шаблона, так как одноканальная планка на 1600 МГц работает быстрее на 15 %. Почему же так?

А дело в том, что пропускная способность памяти и ее частота — это совершенно разные параметры. Повышение частоты увеличивает пропускную способность и уменьшает латентность, однако повышение лишь пропускной способности не сказывается на других параметрах. Активация двухканального режима удваивает именно пропускную способность, а не производительность. Поэтому прирост скорости в приложениях может составлять от 1 до 30 % в зависимости от вашего процессора и ряда других факторов.

Емкость. Сколько гигабайт памяти нужно?

На 2020 год актуальными будут только два варианта: 2 х 4 ГБ или 2 х 8 ГБ. Почему так?

Операционная система, будь то Windows 7 или Windows 10, потребляет от 1 до 3 ГБ памяти в зависимости от загруженности программами. При необходимости, ОС может освобождать память, скидывая данные в файл подкачки, ужимаясь всего в ~600 мегабайт. А большинство игр потребляют от 1 ГБ до 4 ГБ памяти без учета операционной системы.

Лично мной, помимо тестовых игр для графиков были также протестированы и следующие:

  • Killing Floor 2
  • Project Cars 2
  • GTA 5
  • Far Cry 5
  • Shadow of the Tomb Raider

Все они без проблем заработали всего с 4 ГБ памяти в системе, несмотря на то, что у некоторых указано минимум 8 ГБ в системных требованиях. Единственное замеченное ухудшение по сравнению с 16 ГБ — более продолжительные загрузки, и в некоторых случаях фризы, когда память забита впритык.

Само собой, сборка с 8 ГБ памяти уже отыграет себя по полной, не заставляя ОС и игру выкручиваться под маленький объем. Тандем из 2 х 4 ГБ памяти и SSD накопителя будет отличным решением для среднебюджетного ПК. Ну, а 2 х 8 ГБ — идеально для мощного топового ПК без компромиссов.

Но почему не 32 ГБ и более? Потому что это не нужно, вот прямо совсем. Серьезно, лично я, какую бы мультизадачную ахинею ни творил на своем компьютере, ни разу не видел, чтобы было загружено более 12 ГБ оперативной памяти. Ну, разве что если ее специально забивать. Конечно, дело ваше, если есть бюджет, то почему бы не порадовать себя циферками в свойствах системы, да и рам диском тоже можно побаловаться.

Что такое латентность?

Латентность — это некая величина в наносекундах, представляющая собой совокупность частоты и таймингов памяти, а также частоты процессора. Чем она меньше — тем лучше. Обычно именно на этот параметр ориентируются при разгоне и оптимизации памяти.

Если не гнаться за максимальной производительностью, то для игр вполне достаточно <=70 наносекунд латентности, чтобы связка процессор-память работала как надо.

Что такое ранговость?

Ранговость памяти (иногда еще называют «упаковка чипов») — это способ набора чипов на ее плате. То есть количество банков, к которым может обратиться контроллер памяти. Теоретически, чем их больше — тем лучше. Если у вашей памяти более 8 чипов, значит она двухранговая, а если меньше или равно — одноранговая.

Двухранговая память быстрее, чем одноранговая, но это преимущество незначительно. Прирост может составить 1-2 % при условии, что приложению не хватает процессора. В большинстве же случаев разница вообще не будет заметна. 

Я считаю, что это не то, о чем стоит париться при выборе памяти (только если вы не хотите докупить второй модуль к первому имеющемуся). Тем более, не все производители пишут эту характеристику, да и наличие кожуха осложняет диагностику. Лучше обратить внимание на тайминги и частоты. Проверить ранговость можно с помощью все той же CPU-Z.

Что такое ECC и буферная память?

Это всего лишь параметры, относящиеся к серверной оперативной памяти. ECC отвечает за коррекцию ошибок, а буферизация памяти уменьшает электрическую нагрузку. Пользователям домашних ПК это не нужно, да и стоит такая память намного дороже. Короче, не забивайте голову.

Разгон

Разгон позволяет взять частоты, которые значительно превышают стандартные значения профилей вашей памяти. На примере DDR3 — переключить с 1333 МГц на 1600 МГц удается почти всегда. Само собой, материнская плата тоже должна поддерживать большую частоту.

Вариант №1. Простой универсальный

Идеальная попытка/способ разгона для новичков. Мы просто повышаем в биосе частоту на одну ступень из списка доступных и смотрим, что из этого получилось. Компьютер запустился? Отлично, повышаем еще. Как только нашли максимальную стабильную частоту, то проверяем латентность через айду, стала ли она лучше, или такой разгон был бессмысленнен, и параметры стоит вернуть на место.

В моем случае память разогналась до частоты 2400 МГц. Универсальный набор таймингов идеально вписался, значения [11-13-13-35] стали для нее наилучшими и дополнительных действий не потребовалось.

Вариант №2. Продвинутая настройка

Автоподбор таймингов платой не всегда может хорошо подойти под ту частоту, которую вы выставили. Задержки могут получиться слишком большими, что в итоге даст меньшую производительность, чем на стандартном профиле. Или же тайминги останутся неизменными, слишком низкими, что попросту не даст взять высокую частоту.

В этом случае разгон проводится вручную, и я объясню его на примере памяти с частотой 1600 МГц и таймингами 11-11-11 (четвертый тайминг я намеренно не указал, так как частота на него практически не влияет, можно использовать базовый).

  1. Повышаем тайминги сразу на 5 тактов до 16-16-16.
  2. Начинаем искать максимальную частоту: ставим 1866 МГц — компьютер стартует. 2133 МГц — компьютер стартует. 2400 МГц — компьютер стартует. 2600 МГц — компьютер не запускается. Откатываемся обратно на 2400 МГц — это и есть наша наибольшая частота.
  3. Оптимизируем тайминги, так как 16-16-16 — вероятно не лучший набор для нашей частоты. Поочередно понижая каждый из них на единичку и перезагружаясь, получаем значения 11-13-13, которые будут наилучшими для частоты 2400 МГц. Вот и весь принцип разгона.

Стоп-стоп, а как же напряжение? Да, при разгоне часто советуют повысить напряжение, якобы это улучшает стабильность и дает больший разгонный потенциал. На практике, память разгоняется и стабильно работает даже без повышения напряжения, либо же материнская плата сделает все за вас в режиме Auto. Если очень хочется попробовать улучшить значения разгона, можете повысить напряжение (на свой страх и риск) до 1,65 В для DDR3 или же до 1,45 В для DDR4.

Главное — по окончании разгона не забудьте проверить память на ошибки, например встроенной в операционную систему утилитой «Средство проверки памяти Windows» или же программой MemTest86. Ведь иногда память может становиться нестабильной после разгона, и проявится это далеко не сразу — например, на следующий день внезапно зависнет система или игра. В таком случае тайминги нужно будет повысить дополнительно еще на 1 такт или же вовсе вернуть настройки по умолчанию.

Что делать, если после разгона памяти компьютер перестал запускаться?

Если компьютер ушел в бесконечный цикл перезагрузки, то можно попробовать обесточить блок питания примерно на 10 секунд, а затем снова включить. Биос выдаст сообщение в духе «Overclocking Failed» и даст вам возможность поменять настройки или сбросить их. Работает не на всех платах.

Второй вариант — нажать специальную кнопку на плате для сброса настроек биоса. Обычно она подписана как «clr_cmos».

Третий способ, который точно сработает — вытащить батарейку материнской платы на несколько минут и вставить обратно. В результате такого действия сбросятся все настройки биоса.

Взаимодействие памяти с комплектующими ПК

Оперативная память — это посредник ваших комплектующих, представляющий из себя следующую схему: Быстрая память → более быстрый процессор → лучшее использование потенциала видеокарты → больший FPS в играх.

Если вашей игре не хватает производительности процессора/памяти, то и видеокарта не сможет грузиться на 100 % (при отключенной вертикальной синхронизации).

Влияние памяти на процессор

Оперативная память тесно связана с вашим процессором. Чем быстрее память, тем лучше отклик процессора и его производительность. Простой разгон памяти может увеличить потенциал процессора до +15 %, что хорошо видно на примере тестов в программе WinRar.

Для полноты картины я решил провести еще один квартет тестов, для которых частота процессора была уменьшена до 2,4 ГГц и количество потоков уменьшено вдвое.

Здесь уже прирост чуть более ощутим в отличие от 1-кадрой разницы при частоте 4,2 ГГц.

Примечание: даже если ваша игра показывает, что процессор загружен всего на 50 %, это не обязательно означает, что ей хватает его производительности. То есть увеличение частоты процессора или памяти все равно может улучшить частоту кадров.

Влияние процессора на память

Что-что? И в обратном направлении тоже? Да, все верно: чем выше частота процессора, тем ниже латентность памяти. При этом количество ядер или потоков значения не имеют.

Следующий график наглядно показывает зависимость латентности от частоты процессора на разогнанном профиле памяти (2400 МГц). Command Rate выставлен на единицу.

Получается, что 43,2 наносекунды — это наилучшая латентность, которую мне удалось получить на тестовой конфигурации.

Влияние на дискретную видеокарту

Оперативная память не оказывает прямого воздействия на видеокарту, ведь у видеокарты есть собственная память, куда игрой складываются все необходимые графические данные.

Чтобы убедиться в этом наверняка, я использовал игровой бенчмарк Aliens vs. Predator Benchmark. Его преимущество состоит в минимальном использовании процессора. Разница между наихудшим одноканальным профилем памяти и наилучшим двухканальным профилем, при средней частоте кадров ≈175 составила… всего 1 фпс, что вообще в пределах погрешности.

Влияние на встроенную видеокарту

А вот для встроенных видеокарт все как раз таки наоборот — они не имеют собственной памяти и просто заимствуют оперативную. То есть, чем быстрее будет ваша память, тем более высокую частоту кадров в играх вы получите.

Для следующего графика будет использоваться встроенная Intel HD Graphics 4600. Для наглядности, базовый профиль JEDEC был протестирован в одноканальном и в двухканальном режимах, в графиках они отмечены как SCJ и DCJ соответственно.

Прочие вопросы

Что такое файл подкачки?

Файл подкачки — это специальный файл на вашем накопителе, в который система может сливать информацию с оперативной памяти, чтобы на ней освободилось место.

Например, если у вас всего 4 ГБ памяти, операционная система в данный момент использует 2 ГБ, и вы хотите запустить игру, которой единолично требуется 3 ГБ памяти, то ОС сохраняет данные ненужных в данный момент процессов в файл подкачки, что освобождает место в оперативной памяти и дает возможность запустить ту самую игру.

Часть вашего накопителя просто становится очень медленной оперативной памятью. И если системе внезапно понадобится считать эти самые данные из файла подкачки, то это приведет к долгим загрузкам, лагам и подвисаниям.

Даже если у вас много оперативной памяти, совсем отключать файл подкачки не рекомендуется, так как многие приложения спроектированы использовать его в любом случае. В общем, для файла подкачки можно выделить 4-8 ГБ свободного места — этого вполне достаточно.

Что лучше — DDR3 или DDR4?

Немного больной вопрос современного гейминга, так как DDR4 проигрывает по показателям таймингов, но имеет больший потенциал на частоты.

В качестве примера возьмем частоту 2133 МГц — это высокое значение для DDR3 и одно из базовых для DDR4. И если стандарт JEDEC предлагает тайминги 13-13-13 для DDR3-2133, то для DDR4-2133 эти значения составляют 15-15-15, что ощутимо хуже. Получается, чтобы DDR4 начала демонстрировать превосходство над DDR3 ей нужно иметь примерно на 30 % более высокую частоту.

Бюджетная DDR4 даже может являться причиной фризов в требовательных играх из-за высоких таймингов и, соответственно, латентности. Но выбора у нас в любом случае нет, так как DDR3 постепенно уходит в небытие, а на горизонте уже маячит DDR5.

Нужен ли памяти радиатор или кулер?

Память греется слабо относительно прочих комплектующих. Ее температура обычно не превышает 65 градусов, то есть она может без проблем обходиться без радиатора и тем более без специального кулера. Однако память с красивой металлической оболочкой выглядит намного лучше, да и от пыли и случайных царапин обеспечивается неплохая защита. Плюс дополнительная страховка от перегрева для оверклокерских решений.

Почему мнения о важности памяти расходятся?

Причиной тому может быть множество факторов, будь то динамическое окружение в играх или кривая сборка операционной системы ютуб блогера. Но в основном это разные конфигурации ПК, на которых проводятся тесты. Например, процессоры AMD, как правило, сильнее зависят от памяти, чем Intel. Да и разница между встроенной и дискретной графикой колоссальна. И если пользователь изначально имеет средний процессор и так себе память, то их оптимизация явно даст больший эффект, чем попытка разогнать и без того хорошую сборку. Поэтому мнения и расходятся: одни говорят, что влияние памяти нулевое, а другие получают до 30 % прироста производительности.

Заключение

Итак, подведем краткий итог того, что мы узнали из этой статьи.

  • Ускорение памяти не оказывает влияния на видеокарту, но может немного увеличить потенциал процессора и встроенной графики.
  • Важно иметь как минимум две планки памяти в системе для активации двухканального режима.
  • Если ваша память поддерживает XMP профили, то не забудьте их включить в биосе.
  • Память с разными характеристиками можно смешивать, но все же есть риски потерять часть производительности.
  • Двухканальная и двухранговая память — это не одно и то же. Аналогично можно сказать о частоте и пропускной способности.

Как разогнать оперативную память и зачем это делать | Оперативная память | Блог

После установки оперативная память работает на минимальной частоте. Купив планку ОЗУ с тактовой частотой 2400 МГц, можно с удивлением обнаружить, что она функционирует на 1600 МГц.

Зачем добиваться максимальной производительности оперативной памяти

Чем больше МГц, тем выше пропускная способность чтения и записи, больше операций выполняется за одну секунду. Архивация файлов с помощью WinRAR происходит на 40% быстрее. В этом обзоре наглядно показано, как влияет разгон Kingston HyperX FURY на скорость обработки информации.

Чтобы сэкономить себе время на поиски оптимального тайминга, можно воспользоваться программой «Drum Calculator for ryzen». ОЗУ, работающая с минимальным таймингом и максимальной частой, больше нагружает процессор, что отражается на количестве FPS в играх. Пример использования калькулятора и удачного разгона здесь.

А здесь можно посмотреть детальное и полномасштабное тестирование изменения частот и таймингов с приростом 6–14 FPS.

Совместимость

Оперативная память работает на частоте самого медленного модуля. Если установлено несколько планок разных производителей или серий, может возникнуть конфликт совместимости, тогда операционная система не запустится.

Чтобы выжать из железа максимум, надо устанавливать модули памяти из одной серии. В этом обзоре показана разница между двухканальным и одноканальным режимом работы ОЗУ.

В двухканальном режиме необходимо устанавливать планку через один слот. Тут продемонстрирована комплексная работа планок оперативки из одной серии.

Правила разгона

Не все материнские платы поддерживают разгон. Китайские «ноунеймы» в особенности любят блокировать возможность увеличить производительность вручную, оставляя только  автоматическое поднятие частот.

Turbo Boost — это всегда разгон в щадящем режиме, протестированный производителем и максимально безопасный. Чтобы получить производительности на 5–10% больше, потребуется поработать ручками. Контроллер памяти процессора не даст разогнать оперативную память выше собственных параметров частоты.

Спасительная кнопка отката

Вывести из строя оперативную память, меняя частоту — невозможно. Со слишком высокими параметрами ПК просто не запустится. Если после нескольких загрузок все еще появляется «синий экран смерти», необходимо сбросить настройки на заводские параметры. Делается это с помощью перемычки «CLR CMOS», на некоторых материнках он подписан, как «JBAT».

Настройка частоты и тайминги памяти

Есть два способа разгона — автоматический и ручной. Первый вариант безопасен, второй позволяет добиться большей производительности, но есть риск сбоя ОС и физического повреждения ОЗУ. Для увеличения частоты оперативной памяти используется BIOS.

Автоматическая настройка 

Специальное программное обеспечение «Extreme Memory Profiles» для процессоров Intel позволяет быстро настроить уже готовые профили разгона. У фанатов AMD есть свой софт от MSI. Применяя автоматические настройки, мы получаем оптимальные параметры задержки.

Разгон серверной ОЗУ

Рассмотрим автонастройки частоты на примере материнской платы x79 LGA2011 с процессором Intel Xeon E5-2689. Серверная оперативная память — 2 планки Samsung по 16 Gb с частотой 1333 MHz, работающие в двухканальном режиме, тайминг — 9-9-9-24. 

Путь к разгону лежит через BIOS, вкладка «Chipset», раздел «Northbridge» — параметры северного моста.

Выбираем настройку «DDR Speed». Параметр «Auto» меняем на «Force DDDR3 1600». Сохраняем, перезагружаемся. Запускаем тест в программе AIDA 64, выбрав в меню «Сервис» задачу «Тест кэша и памяти», затем жмем «Start Benchmark».

В синтетическом тесте скорость чтения, записи и копирования увеличилась почти на 20%. «Memory Bus» поднялся до 800 MHz, тайминг — 11-11-11-28.

Возвращаемся в BIOS, ставим «Force DDDR3 1866».

При таких настройках прирост производительности достигает 39%. Процессор разогнался автоматически с 2600 MHz до 3292,5 MHz, прирост CPU составил 26%, параметры тайминга — 12-12-12-32.

Разгон с помощью профиля XMP от MSI

В современные планки ОЗУ устанавливается SPD-чип с предустановленными профилями разгона, позволяя увеличивать частоту до 3200 MHz. Для разгона такой оперативки выбираем функцию «XMP» в BIOS.

Опускаемся вниз, не трогая остальные настройки, указываем «Профиль 1». Сохраняем изменения, тестируем в Benchmark.

Ручная настройка

Включаем компьютер. Для перехода в BIOS нажимаем клавишу «F1» или «Delete» — в зависимости от материнки. Переходим в раздел, отвечающий за центральный процессор и оперативную память, ищем строку с параметром частоты ОЗУ.

Если в BIOS есть пункт «MB Intelligent Tweaker (M.I.T.)», нажимаем «Ctrl + F1» в главном меню — должна появиться еще одна категория с настройками. В ней находим строку «System Memory Multiplier».

Если пункта M.I.T. нет, скорей всего, используется «AMI BIOS». Ищем вкладку «Advanced BIOS Features», переходим к параметру «Advanced DRAM Configuration».

Если установлен «UEFI BIOS», нажимаем «F7» — раздел «Advanced Mode», переходим к вкладке «Ai Tweaker», изменяем частоту, используя выпадающее меню «Memory Frequency».

Метод научного тыка 

Теперь рассмотрим подробнее, как разогнать частоту, тайминг. Сразу «давить на газ» не стоит, параметр частоты увеличиваем плавно. Для сохранения нажимаем «F10», перезагружаемся и смотрим результаты с помощью теста Benchmark в AIDA 64 или в другой программе. Универсальных параметров разгона ОЗУ нет, данные ниже предоставлены для ориентира.

Параметр «System Memory Multiplier» позволяет разогнать ОЗУ, изменяя множитель. При изменении частоты, автоматически меняются и базовые тайминги.

Поиграв с вариациями частоты, переходим к нижней строчке «DRAM Timing Control», выставляем тайминги, переключившись с режима «Auto» на желаемые параметры.

Управление временем

Высокая частота и низкие тайминги позволяют увеличить производительность, высокие тайминги и высокая частота — снижают ее. Тайминги или задержка — это количество тактовых импульсов для выполнения операций ОЗУ. Уменьшаем значения с минимальным шагом — 0,5. Получив повышение показателей производительности, можно продолжить, снизив время отклика. Подбирать правильные настройки придется методом проб и ошибок.

Повысить производительность оперативки можно, увеличивая напряжение с помощью параметра «Voltage Setting», безопасно 1.2–1.35 В, максимум — 1.6 В. С этим пунктом стоит быть очень острожным, электричество — не игрушки, есть риск спалить ОЗУ и потерять гарантию.

Увеличение частоты оперативной памяти с помощью готовых профилей — самый простой и быстрый способ получить желаемую производительность. Вариант с ручными настройками больше подходит энтузиастам, для которых дополнительный прирост быстродействия на дополнительные 10–15% — дело принципа.

Почему вам стоит разгонять оперативную память (это легко!) / Хабр

Любая программа на ПК использует для работы оперативную память, RAM. Ваша RAM работает на определённой скорости, заданной производителем, но несколько минут копания в BIOS могут вывести её за пределы стандартных спецификаций.

Да, скорость работы памяти имеет значение

Каждая запускаемая вами программа загружается в память с вашего SSD или жёсткого диска, скорость работы которых гораздо ниже, чем у памяти. После загрузки программа обычно остаётся в памяти некоторое время, и CPU получает к ней доступ по необходимости.

Улучшение скорости работы памяти может напрямую улучшить эффективность работы CPU в определённых ситуациях, хотя существует и точка насыщения, после которой CPU уже не в состоянии использовать память достаточно быстро. В повседневных задачах несколько дополнительных наносекунд не принесут вам особой пользы, но если вы занимаетесь обработкой больших массивов чисел, вам может помочь любое небольшое увеличение эффективности.


В играх скорость RAM может ощущаться гораздо сильнее. У каждого кадра есть только несколько миллисекунд на обработку кучи данных, поэтому если вы играете в игру, зависящую от скорости CPU (к примеру, CSGO), ускорение памяти может увеличить частоту кадров. Посмотрите на это измерение скорости от Linus Tech Tips:

Средняя частота кадров вырастает на несколько процентов с увеличением скорости RAM, когда большую часть работы делает CPU. Сильнее всего скорость памяти проявляется на минимальном показателе частоты; когда загрузка новой области или нового объекта должна произойти за один кадр, он будет прорисовываться дольше обычного, если будет ожидать загрузки данных в память. Это называется «микрозаикание», или «фриз», и игра может производить впечатление заторможенности даже при хороших показателях средней частоты кадров.

Разгонять память не страшно

Разгонять память совсем не так страшно, как разгонять CPU или GPU. Разгоняя CPU, вы должны следить за его охлаждением, за тем, справится ли охлаждение с увеличением частоты. Работать CPU или GPU могут гораздо громче, чем обычно [видимо, имеется в виду работа кулеров / прим. перев.].

Память не особенно перегревается, поэтому разгонять её довольно безопасно. Даже на нестабильных частотах худшее, что может произойти – это выявление ошибки при тесте на стабильность. Однако если вы проводите эти эксперименты на ноутбуке, вам нужно убедиться, что вы сможете очистить CMOS (восстановив настройки в BIOS по умолчанию), если что-то пойдёт не так.

Скорость, тайминги и CAS-латентность

Скорость работы памяти обычно измеряют в мегагерцах, МГц [так в оригинале; конечно, в герцах измеряют частоту, а частота влияет на скорость работы / прим. перев.]. Это мера тактовой частоты (сколько раз в секунду можно получить доступ в память), совпадающая с мерой скорости CPU. Стоковая частота DDR4 (современного типа памяти) обычно составляет 2133 МГц или 2400 МГц. Однако на самом деле это немного маркетинг: DDR обозначает «удвоенную скорость данных», то есть что память читает и пишет дважды за один такт. Так что на самом деле её скорость составляет 1200 МГц, или 2400 мегатактов в секунду.

Но большая часть DDR4 RAM работает на 3000 МГц, 3400 МГц или выше – благодаря XMP (Extreme Memory Profile). XMP, по сути, позволяет памяти сообщить системе: «Да, я знаю, что DDR4 должна поддерживать частоту до 2666 МГц, но почему бы тебе не ускорить меня?» Это ускорение из коробки, предварительно настроенное, проверенное и готовое к запуску. Оно достигается на уровне железа, при помощи чипа на памяти под названием Serial Presence Detect (SPD), поэтому на одну планку может быть только один профиль XMP:

У каждой планки памяти есть несколько встроенных вариантов тактовой частоты; стоковый вариант использует ту же самую систему SPD под названием JEDEC. Любая частота, превышающая скорость JEDEC, считается разгоном – то есть, XMP получается просто профилем JEDEC, разогнанным на заводе.

Тайминги RAM и CAS-латентность – два разных способа измерять скорость памяти. Они измеряют задержку (то, насколько быстро RAM реагирует на запросы). CAS-латентность – это мера того, сколько тактов проходит между командой READ, отправленной в память, и получением процессором ответа. Её обычно обозначают «CL» и указывают после частоты памяти, например: 3200 Mhz CL16.

Она обычно связана со скоростью работы памяти – чем больше скорость, тем больше CAS-латентность. Но CAS-латентность – лишь один из множества разных таймингов и таймеров, с которыми работает RAM; все остальные обычно просто называются таймингами памяти. Чем меньше тайминги, тем быстрее будет ваша память. Если вам захочется подробнее узнать о каждом из таймингов, прочитайте руководство от Gamers Nexus.

XMP не будет делать всё за вас

Вы можете купить планку памяти от G.Skill, Crucial или Corsair, но эти компании не производят сами чипы DDR4, лежащие в основе RAM. Они покупают чипы у фабрик, изготавливающих полупроводниковые устройства, что означает, что вся память на рынке происходит из небольшого количества главных точек: Samsung, Micron и Hynix.

Кроме того, модные планки памяти, которые помечаются как 4000 МГц и выше, и у которых заявлена низкая CAS-латентность, на самом деле не отличаются от «медленной» памяти, стоящей в два раза дешевле. Оба варианта используют чипы памяти Samsung B-die DDR4, просто у одного из них золотистый радиатор, цветные огоньки и украшенный стразами верх (да, это реально можно купить).

Приходя с фабрики, чипы подвергаются проверкам при помощи процесса под названием «биннинг». И не вся память показывает наилучшие результаты. Некоторые чипы хорошо ведут себя на частотах 4000 МГц и выше с низкой CAS-латентностью, а некоторые не работают выше 3000 МГц. Это называется кремниевой лотереей, и именно она повышает цену на высокоскоростные планки.

Но заявленная скорость не обязательно ограничивает реальный потенциал вашей памяти. Скорость XMP – это просто рейтинг, гарантирующий, что планка памяти будет работать на указанной скорости 100% времени. Тут играют большую роль маркетинг и сегментация продуктов, чем ограничения RAM; никто не запрещает вашей памяти работать за пределами спецификаций, просто включить XMP легче, чем разгонять память самому.

Также XMP ограничен определённым набором таймингов. Согласно представителям Kingston, в памяти «настраиваются только ’основные’ тайминги (CL,RCD,RP,RAS)», и поскольку у SPD есть ограниченное место для хранения профилей XMP, всё остальное решает материнская плата, которая не всегда делает верный выбор. В моём случае материнка Asus в режиме «авто» установила очень странные значения некоторых таймингов. Моя планка памяти отказалась работать по умолчанию, пока я не исправил эти тайминги вручную.

Кроме того, биннинг на фабрике жёстко задаёт диапазон напряжения, в котором должна работать память. К примеру, фабрика протестирует память с напряжением в 1,35 В, не будет продолжать тест, если память не покажет максимальных результатов, и даст ей метку «3200 МГц», под которую попадает большинство планок. Но что, если запустить память с напряжением в 1,375 В? А 1,39 В? Эти цифры еще очень далеки от опасных для DDR4 напряжений, но даже небольшой прирост напряжения может помочь значительно увеличить частоту памяти.

Как разгонять память

Самое сложное в разгоне памяти – определить, какие частоты и тайминги нужно использовать, поскольку в BIOS есть более 30 различных настроек. К счастью, четыре из них считаются «основными» таймингами, и их можно подсчитать при помощи программы Ryzen DRAM Calculator. Она предназначена для систем на базе AMD, но будет работать и для пользователей Intel, поскольку в основном предназначена для расчётов таймингов памяти, а не CPU.

Скачайте программу, введите скорость памяти и тип (если он вам неизвестен, то быстрый поиск серийного номера в Google может выдать вам результаты). Нажмите кнопку R-XMP для загрузки спецификаций, и нажмите Calculate SAFE [безопасный вариант] или Calculate FAST [быстрый вариант], чтобы получить новые тайминги.

Эти тайминги можно сравнить с прописанными спецификации при помощи кнопки Compare timings – тогда вы увидите, что на безопасных настройках всё немножечко подкручено, а основная CAS-латентность уменьшена на быстрых настройках. Будут ли у вас работать быстрые настройки – вопрос удачи, поскольку это зависит от конкретной планки, но у вас, вероятно, получится заставить память работать с ними в безопасном диапазоне напряжений.

Скриншот программы лучше отправить на другое устройство, поскольку вам понадобится редактировать настройки таймингов в BIOS компьютера. Затем, когда всё работает, вам нужно будет проверить стабильность разгона при помощи встроенного в калькулятор инструмента. Это процесс долгий, и вы можете прочитать наше руководство по разгону памяти, чтобы узнать все его подробности.

Как узнать частоту оперативной памяти компьютера

Привет, друзья. Как узнать частоту оперативной памяти нашего компьютера? Частота – не единственный, но один из значимых параметров, определяющих быстродействие памяти. Чем выше частота, тем быстрее память может передавать данные на обработку другим системным компонентам. Соответственно, чем выше частота памяти, тем быстрее производится обработка данных в целом. Если вы планируете апгрейд или покупку нового компьютера, вам важно понимать, что вы имеете сейчас. Чтобы прикинуть, как потенциально вы можете улучшить ситуацию, вложив денежные средства правильно, только в нужные мощности. Давайте же разбираться в том, что такое частота оперативной памяти, какая она бывает, и как её узнать на своём компьютере.

Как узнать частоту оперативной памяти компьютера

Что такое частота оперативной памяти

Частота оперативной памяти – это частота передачи данных, измеряется в МГц. Значение частоты всегда указывается в характеристиках модулей RAM в магазинах наряду с типом памяти (DDR-DDR4), стандартом и пропускной способностью, объёмом. Вот, например, оперативная память DDR4 с частотой 3466 МГц.

Это максимальная частота, на которой может работать эта оперативная память. Акцент на слове может. Не факт, что будет работать, поскольку могут быть ограничивающие её частотный потенциал факторы. Так, чтобы память могла работать на своей максимальной частоте, такую частоту должны поддерживать материнская плата и процессор компьютера. Но здесь есть свои нюансы, и мы к ним ещё вернёмся.

Частота оперативной памяти – это номинальный показатель, и у неё есть стандарты значений в зависимости от типа памяти:

  • DDR 200, 266, 333, 400 МГц;

  • DDR2 400, 533, 667, 800, 1066 МГц;

  • DDR3 800, 1066, 1333, 1600, 1800, 2000, 2133, 2200, 2400 МГц;

  • DDR4 2133, 2400, 2666, 2800, 3000, 3200, 3333, 3866, 4000 и более МГц.

Чем новее тип памяти, тем выше её максимальная частота.

Что есть нормой? Для рабочего или медийного устройства вполне хватит частот 1333-2133 МГц. Для современных мощных игровых компьютеров желателен больший показатель, однако лучше, чтобы не более 3600 МГц. Поскольку работа памяти на высоких частотах требует большего напряжения. Как следствие имеем большее тепловыделение, необходимость установки дополнительного охлаждения, ну и самое главное – более быстрый износ устройства.

Типы частоты оперативной памяти

Друзья, у частоты оперативной памяти как у понятия есть несколько значений, грубо говоря, типов. С первым типом мы уже познакомились выше, это максимальная частота, на которой может работать память, номинальное стандартизированное значение, которое указывается в характеристиках производителей. Узнать такое вот номинальное значение планок оперативной памяти, установленной на вашем компьютере, можно элементарно с помощью командной строки. Запускаем её от имени администратора и вводим:

wmic memorychip get Speed

И увидим в ответ номинальные значения максимальной частоты планок. В нашем случае на компьютере установлено две планки памяти, и вот по каждой из них командная строка выдала значение частоты 1600, т.е. 1600 МГц.   

Но есть ещё понятие текущей частоты – частоты, на которой оперативная память работает по факту, с учётом ограничений материнской платы, процессора, выставленных в BIOS параметров, другой планки оперативной памяти. Ведь если на компьютере стоит несколько планок памяти разных моделей с разной частотой, то работать планка с большей частотой будет на максимуме планки с меньшей частотой. И вот такую текущую, т.е. фактическую частоту оперативной памяти мы можем увидеть в программе AIDA64. Идём по пути:

Раскрываем устройства памяти, они будут отображены как каналы DIMM. Кликаем каждый канал и смотрим поля «Максимальная частота» и «Текущая частота». В нашем случае видим, что планка памяти по факту работает на своей максимальной частоте, и с неё выжимается максимум потенциала. 

Но по указанному выше пути AIDA64, как видим, показывает текущую частоту, как и максимальную, также в виде номинального показателя. Реальный показатель мы можем посмотреть в программе CPU-Z. Открываем вкладку «Memory» и смотрим графу «DRAM Frequency». Здесь видим значение 802,1 МГц. Это значение необходимо умножить на 2, и таким образом мы получим немногим более номинального показателя 1600 МГц, как показано в AIDA64.Почему CPU-Z показывает вдвое уменьшенное значение текущей частоты? Потому что эта программа отображает только реальную тактовую частоту памяти. И вот здесь мы сталкиваемся с ещё одним вектором разделения понятий частоты оперативной памяти – реальная и эффективная. Понятия реальная и эффективная частота памяти появились после выхода на рынок планок памяти типа DDR. Тип-предшественник – память SDRAM — работала только на реальной тактовой частоте, работала за счёт считывания команд только по фронту микросхемы памяти. В памяти типа DDR находится та же микросхема памяти SDRAM, но работает DDR с удвоенной скоростью, т.е. с удвоенным объёмом передаваемых за такт данных. Достигается такая удвоенная скорость работы за счёт двойного считывания команд из микросхемы памяти. И вот частота работы памяти типа DDR называется эффективной. Такое понятие, как реальная частота оперативной памяти, не применяется производителями и продавцами, они при указании характеристик всегда указывают только эффективную частоту. И многие программы-диагносты работают с показателями эффективной частоты, за исключением программ типа CPU-Z.

Фактическую эффективную частоту оперативной памяти с реальным, а не номинальным показателем можно увидеть в BIOS.

Но вернёмся к программе CPU-Z. В её вкладке «SPD», в графе «Max Bandwidth» есть иной показатель реальной частоты оперативной памяти, указанный в скобках, в данном случае – 667 МГц.Его же увидим в программе AIDA64 по пути:

в графе «Скорость памяти». Только увидим и как показатель реальной частоты 667 МГц, и как эффективной 1333 МГц. 

Почему этот показатель ниже текущей фактической частоты памяти 1600 МГц? А это, друзья, максимальная частота с учётом ограничений процессора. Если мы посмотрим характеристики процессора нашего компьютера на официальном сайте Intel, то увидим, что этот процессор может работать с частотой оперативной памяти максимум 1333 МГц.По идее при таком раскладе компьютер должен как минимум подвисать при запуске ресурсоёмких программ или игр, как максимум — уходить в синий экран смерти. Но в плане ограничений некоторых процессоров не всё так жёстко и однозначно. В данном случае мы имеем серверный Xeon, который при существующих формальных ограничениях по работе с максимальной частотой памяти 1333 МГц может работать с частотой 1600 МГц, более того, мог бы работать даже с частотой 1866 МГц. Для этого ему в пару нужна предусматривающая разгон оперативной памяти материнская плата на чипсете P или Z. И в нашем случае мы имеем матплату на чипсете Z. На остальных материнских платах оперативная память работала бы с частотой не выше 1333 МГц.

А вот вам, друзья, другой пример работы оперативной памяти вопреки ограничениям процессора. Имеем память с текущей номинальной эффективной частотой 1600 МГц, и она же является максимальной с учётом ограничений процессора.

Но мы идём в твикер BIOS компьютера и выставляем большую частоту.Повысим немного, всего лишь на один шаг – до 1800 МГц.Теперь CPU-Z нам по-прежнему показывает максимальную частоту (в переводе на эффективную) 1600 МГц. Но текущая фактическая частота (опять же, в переводе на эффективную) значится немногим более 1800 МГц.Всё потому, друзья, что и во втором случае мы имеем дело с процессором, на этот раз Core i7, который может работать с частотами оперативной памяти сверх формально заявленных. И также имеем дело с материнской платой на чипсете Z, который позволяет разгон оперативной памяти.

Выставление в BIOS частоты памяти на её допустимую, но сверх формальных возможностей процессора сложно назвать разгоном в полноценном понимании этого термина, тем не менее, необходимо учитывать риски. Это всё равно в какой-то степени больший износ процессора, поэтому настоятельно рекомендую вам выставлять частоту памяти, превышающую допустимую для процессора не более, чем на один шаг.

***

И да, кстати, текущую частоту памяти в виде не номинального, а фактического показателя можно посмотреть в программе AIDA64 по пути:

Здесь в графе «Свойства шины памяти» будут отображаться текущая реальная и эффективная частоты.

Метки к статье: Железо и периферия Оперативная память

Какая скорость оперативной памяти нужна для игр?

Опубликовано 30.03.2019, 00:08   · Комментарии:15

Просматривая установленную оперативной памяти вашего любимого игрового компьютера, могут быть непонятны некоторые расшифровки различных спецификаций, особенно когда дело доходит до скорости. С большим количеством вариантов скорости от 1066 МГц до 4800 МГц и всего, что между ними, насколько важна скорость оперативной памяти и какая цифра вам нужна?

Для начала, стоит иметь хотя бы базовое понимание того, что скорость оперативной памяти означает, так как этот критерий значительно отличается от других наиболее распространенных MHz скорости. С данным понятием мы сталкиваемся в вычислительной технике, а точнее, в скорости процессора.
МГц-это мера скорости оперативной памяти или частоты, где 1 Гц соответствует одному такту в секунду.

Например, RAM с 2400мгц можете отправить 240,000,0000 блоков данных в секунду.

Однако, оперативная память не вычисляет данные, как процессор и выступает лишь как чрезвычайно быстрое хранилище для данных. Он отправляет данные в процессор для обработки, и передает обработанные данные на другие компоненты, такие как твердотельные накопители, видеокарты, контроллеров USB, сетевого адаптера и т.д.

Скорость оперативной памяти, по сути, означает пропускную способность. Ставка, таким образом, определяет, сколько полосы пропускания между оперативной памятью и центральным процессором или другими словами максимальный объем данных, который может быть передан между двумя компонентами в любой момент.

Почему скорость оперативной памяти важна?

Чтобы объяснить это, давайте возьмем условную лесопилку. ЦП является пилорамой, а питание и ОЗУ склад. Скорость RAM определяет, сколько древесины склад может поставлять на завод. Скажем, завод может перерабатывать 2400 журналов в день. Склад должен обеспечить по крайней мере 2400 журналов в день, чтобы завод работал с максимальной эффективностью. В противном случае, лесопилка будет простаивать, заставляя работать весь пилорамный аппарат медленнее.

Производственные цепочки, в частности грузовики, которые несут измельченную древесину со склад на склад для распределения, зависит от производства этих же складов достаточного колличества журналов, чтобы вся система работала нормально.

В контексте ПК, если скорость оперативной памяти выполняется медленнее, чем максимальная стабильная скорость поддерживаемая материнской платой или процессором, то это повлияет на производительность ПК на уровне ниже своего потенциала. Иными словами, узкое место.

Как вы можете видеть, скорость оперативной памяти работает во многом таким же образом, как и его объем, у которого он ниже определенного порога. Нехватка скорости имеет серьезные последствия для производительности компьютера.

CPU и разгон ОЗУ

Производители процессоров Intel и AMD обеспечивает детальные спецификации для процессора. В ОЗУ, технические характеристики расписаны на самой плашке, как тип и максимальная поддерживаемая частота, например, Intel i9-7900x процессор поддерживает память DDR4-2666. К сожалению, эта мера представляет собой официально поддерживаемую частоту, что производитель считает стабильной, но это на самом деле не так, максимальная частота ЦП может обрабатывать частоты и выше.

По сути, любую разогнанную скорость, производитель не может гарантировать стабильную работу. Все это не значит, что он не будет работать, и множество пользователей ПК регулярно используют более высокие частоты ОЗУ, у которых компании предлагают скорость до 4800 МГц, как мы говорили ранее.

Разгон оперативной памяти включает в себя изменение BIOS для чтения, что называется профилем XMP, которые затем использует в полном объеме RAM, с колеблющиесимя результатами. Использовать комбо из разгона процессора/материнской платы, чтобы увеличить скорость чтения ОЗУ, может вызвать сбои и проблемы.

Аналогично, материнские платы имеют ограничение на то, что какую частоту будет поддерживать оперативная память. Диапазоны значительно выше, чем у ЦП, но нет смысла покупать 4800 MHz оперативную память с материнской платой, которая поддерживает только 3333MHz.

Скорость ОЗУ повышает производительность?

Оставим формальности, и повлияет ли разгон на повышение производительности? Краткий ответ: да.

Возьмите игры; результаты сильно зависят от игры и от возможностей ОЗУ. Если улучшения есть, то они могут быть измерены повышением ФПС где-то от 1 до 10 кадров, но это опять же существенно зависит от других компонентов внутри компьютера, наряду с оперативной памятью.

Более высокая скорость ОЗУ с медленным процессором или бюджетным графическим процессором вообще не улучшит игровой процесс. Если у вас есть 1600 МГц ОЗУ, но ваш процессор/материнская плата поддерживает частоту до 2666 МГц, то покупка более быстрой ОЗУ, принесут ощутимую разницу.

Усовершенствования, как правило, сводятся к 3200 МГц, поскольку увеличение скорости повышает производительность.

Цена

Наиболее важным фактором между скоростью памяти и ценой. Чем выше рейтинг МГц, тем дороже плашка оперативной памяти. Как и в любом моменте сборки или модернизации компьютера, все зависит от бюджета.

При выборе оперативной памяти с более высокой скоростью или покупкой нового CPU или GPU, плашки оперативной памяти в 4266MHz по сравнению с видеокартой, даст незначительный прирост производительности. То же самое можно сказать про выбор лучшего процессора с дополнительными ядрами и высокой тактовой частоте более высокой частотой памяти.

Имея это в виду, придерживайтесь идеи, что деньги лучше потратить на другие компоненты, если у вас есть как минимум 8-16 ГБ ОЗУ.

Вывод

Возвратимся к главному вопросу: какая скорость памяти нужна. Нет четкого ответа, а для большинства пользователей мы рекомендуем получить максимальную скорость, поддерживаемую материнской платой или процессором.

Если у вас есть бюджет, есть желание и много свободного времени на настройку BIOS и профилей XMP, чтобы экспериментировать, то мы рекомендуем ограничить ваше желание максимально увеличить скорость, и довольствоваться 3200 МГц.

На что влияет скорость оперативной памяти: описание

Большинство пользователей представляют себе, на что влияет скорость оперативной памяти. Она отвечает за передачу данных, и чем эта комплектующая часть будет мощнее, тем быстрее будут работать приложения, а особенно игры. При ее недостаточном объеме, все процессы, программы будут загружаться довольно долго, а то и вовсе вылетать, вплоть до незапланированной перезагрузки ОС, что будет вызывать неподдельное раздражение у пользователя.

Принцип работы и основные характеристики ОЗУ

  1. Объем памяти

Оперативная память представляет собой микросхему, в которой отсутствует автономное питание. Иными словами, если компьютер выключается, то и вся информация, хранившаяся в ОЗУ стирается. Взаимодействие оперативки с процессором осуществляется посредством кэш или память нулевого уровня.

Быстродействие ОЗУ зависит от нескольких параметров, среди которых можно выделить тип, а также частоту. При этом, наиболее важным показателем является объем. Для современных компьютеров, минимальный порог объема оперативки должен составлять 2 гигабайта. Это связано с тем, что начиная с версии Windows Vista, операционная система забирает под свои нужды 1 Гб, а соответственно для полноценной работы приложений необходимо иметь хотя бы такой же размер. Меньший объем конечно же встречается (хотя в магазинах таких планок уже нет), но эти компьютеры уже безнадежно устаревшие и на них практически невозможно установить современную ОС, а также ресурсоемкие программы.

Наиболее оптимальным вариантом на данный момент для бюджетного компьютера будет установка 4-х гигабайт ОЗУ. Это обеспечит нормальную и быструю работу в интернете, даст возможность смотреть видео различного качества и устанавливать современные игры с использованием средних настроек (хотя видео и игры еще зависят и от характеристик видеокарты).

Для более продвинутых пользователей, которые работают с графикой или редактируют аудио- видео- потоки, необходим объем оперативки, который должен составлять от 8-ми до 16-ти Гб, при этом не нужно забывать, что в этом случае необходима и хорошая графическая карта c чипсетом GDDR5 и в которой будет не менее 4-х Гб оперативки. При установке большего объема ОЗУ, например 32 Гб, об установке дополнительных планок, в свободные слоты для нее (если таковые будут), можно за быть на несколько лет.

Примечание: при установке большего количества оперативной памяти, не стоит думать, что компьютер будет после этого летать, ведь быстродействие зависит и от процессора, и от иных комплектующих. К тому же, не нужно забывать, что 32-х битные версии операционных систем могут использовать лишь 3,2 Гб ОЗУ, остальной объем будет простаивать.

  1. Тип оперативной памяти

От этого параметра также зависит скорость передачи данных. В современных компьютерах уже нигде не используется DDR тип, а только лишь с индексами 2,3 или 4. Это обязательно стоит учитывать, если пользователь решил докупить и установить в свободный слот дополнительную планку, потому как хоть по длине и ширите они одинаковы, на соединении с материнской размещена прорезь, которая располагается на различных расстояниях (см. скриншот), а соответственно не смогут быть установлены.

Стоит отметить, что DDR 2 уже редко можно встретить и на данный момент, практически везде устанавливается тип DDR 3. Наиболее современный тип оперативной памяти DDR 4 встречается крайне редко, в основном на тех компьютерах, которые были приобретены или модернизированы относительно недавно. А если учесть то, что на все материнские платы, поддерживающие DDR 4, можно установить лишь процессоры Intel, которые в значительной степени дороже AMD, это тоже влияет на популяризацию современного типа памяти. Хотя можно с уверенностью утверждать, что с DDR 4, эффективность возрастет в 1,5-2 раза.

  1. Частота

Этот параметр также напрямую связан с быстродействием компьютера. Чем выше частота, тем быстрее производится скорость обмена данных. Среди вышеупомянутых типов ОЗУ уже нет таких планок, в которых частота была бы ниже 1600 МГц, однако эта величина на последних моделях может достигать отметки 3200 МГц.

Опять же, если владелец компьютера решил приобрести оперативку и установить ее в дополнительный слот, ему следует учесть следующее:

  • частота новой планки должна быть идентична той, которая уже установлена, в противном случае они не смогут параллельно работать;
  • желательно устанавливать ОЗУ от одного производителя, ведь случаются ситуации, когда некоторые планки с одинаковой частотой, но разных брендов могут конфликтовать между собой и компьютер попросту не будет запускаться;
  • материнская плата также может быть ограничена этим параметром: перед тем, как приобретать новую оперативку, просмотрите характеристики материнки, чтобы все нюансы были соблюдены и компьютер работал;
  1. Увеличение эффективности работы

Иногда у пользователя установлено достаточное количество оперативной памяти, при этом компьютер подтормаживает и человек принимает решение докупать ОЗУ. В некоторых случаях это может совершенно не понадобиться, можно лишь выполнить оптимизацию:

  • просмотрите в диспетчере задач, насколько загружена оперативная память, и если здесь имеется достаточный запас, тогда, скорее всего, дело не в ОЗУ и дополнительная планка проблему не решит;
  • выгрузите приложения, которые в данный момент не используются, а также проверьте список программ, которые расположены в автозапуске. Если в нем будут находиться такие приложения, которые довольно редко и точно не нужны при старте компьютера, также удалите их из этого списка;
  • перезапустите компьютер, ведь иногда некоторые процессы могут подвисать в оперативной памяти и загромождать ее, что и может приводить к торможениям и фризам.

Можно также попробовать разогнать оперативку. Это можно сделать из-под БИОС. Но при этом стоит помнить, что некоторые магазины в подобных случаях могут отказать в гарантийном обслуживании (обмене), да и срок службы будет меньше, чем без выполнения этого действия.

Как правильно конфигурировать оперативную память | Оперативная память | Блог

Практически каждый начинающий пользователь, начавший апгрейд компьютера, сталкивается с вопросом конфигурирования оперативной памяти. Что лучше, одна планка на 16 Гб или две по 8 Гб? Как включить двухканальный режим? В какие слоты ставить планки памяти — ближние или дальние от процессора? Как включить XMP профиль? Какой прирост производительности дает двухканальный режим, включение XMP профиля и разгон памяти?

В идеале конфигурирование памяти желательно начать еще до ее покупки, прикинув, какой объем памяти (ОЗУ) достаточен для ваших задач. Однако зачастую приходится добавлять память к уже имеющейся, что несколько усложняет дело.

Современные приложения и игры стали требовательны к подсистеме памяти, и важно, чтобы она работала в двухканальном режиме для максимальной отдачи. Почему так происходит?

В первую очередь из-за роста производительности процессоров. ОЗУ должна успевать загрузить работой все ядра процессоров, которых становится все больше с каждым годом. 

В играх требования к скорости памяти растут в первую очередь от того, что проекты становятся все реалистичнее, увеличиваются в объемах и детализации 3D-моделей. Новые игры вплотную подбираются к отметке в 100 Гб, и этот объем в первую очередь состоит из текстур высокого разрешения, которые надо переместить с накопителя и обработать.

Недорогие ПК и ноутбуки со встроенной в процессор графикой получают приличный прирост от быстрой памяти и включения двухканального режима. Ведь обычная ОЗУ там используется и видеоядром. Поэтому давайте для начала разберем все о двухканальном режиме ОЗУ.

Двухканальный режим работы памяти

На большинстве материнских плат устанавливаются два или четыре слота под ОЗУ, которые могут работать в двухканальном режиме. Слоты материнской платы обычно помечаются разными цветами.

Чтобы реализовать самый оптимальный режим работы памяти в двухканале, нужно установить два одинаковых модуля ОЗУ в слоты одинакового цвета. Слоты для двух модулей ОЗУ в двухканале обычно называются DIMMA1(2) и DIMMB1(2). Желательно уточнить это в инструкции к вашей материнской плате.

Не всегда у пользователей бывают модули, совпадающие по частотам и таймингам. Не беда, двухканал просто заработает на скорости самого медленного модуля.

Двухканальный режим работы ОЗУ довольно гибок и позволяет установить и разные по объему модули. Например — 4 Гб и 2 Гб в канале A и 4 Гб и 2 Гб в канале B.

Как вариант, можно установить 8 Гб ОЗУ как 4 Гб в канале A и 2+2 Гб в канале B.

И даже конфигурация 4 Гб в канале A и 2 Гб в канале B будет работать в двухканальном режиме, но только для первых 2 Гб ОЗУ.

Но бывают такие ситуации, когда пользователь специально выбирает одноканальный режим работы ОЗУ с одним модулем. Например, если ставит только 16 Гб памяти и только через пару-тройку месяцев накопит на второй модуль на 16 Гб.

Ниже я протестирую, можно ли увеличить производительность одного модуля, разогнав его. А заодно протестирую все возможные режимы работы ОЗУ: с настройками по умолчанию, с включенным XMP профилем и с разгоном. Все тесты проведу как для одноканального режима работы, так и для двухканального.

Серверных материнских плат с четырехканальным режимом работы ОЗУ мы касаться не будем из-за их малого распространения.


Сколько модулей памяти оптимально для производительности?

Теперь нам надо решить, сколько модулей памяти лучше ставить в компьютер.

Если у вас материнская плата с двумя разъемами под ОЗУ, то выбор очевиден — вам нужно ставить две планки с подходящим вам объемом.

А вот если слотов под память у вас четыре, то, поставив четыре планки в четыре слота, можно получить небольшой прирост производительности. Прочитать об этом можно тут.

 

Но минусы такого решения перевешивают — у вас не остается слотов под апгрейд, модули памяти меньшего объема быстрее устаревают морально и меньше ценятся на вторичном рынке. 


Какого объема ОЗУ достаточно?

При выборе объема ОЗУ ориентируйтесь на 8 Гб для офисного ПК и 16 Гб для игрового.

Выбирая 32 Гб ОЗУ, вы получите еще и прирост производительности, ведь большинство модулей DDR4 на 16 Гб — двухранговые. Это значит, что контроллер памяти в процессоре может чередовать запросы к такой памяти, повышая производительность в рабочих приложениях и играх. 

Популярная двухранговая память

То есть, 2х16 Гб ОЗУ будут быстрее 2х8 Гб с той же частотой. Но есть и небольшой минус — у двухранговых модулей более низкий разгонный потенциал.

Посмотреть тип памяти можно программой CPU-Z, во вкладке SPD.


В какие слоты ставить модули памяти — ближние или дальние от процессора?

Раньше ОЗУ чаще ставили в самые ближние к процессору слоты (левые), но теперь все не так однозначно. Надо смотреть инструкцию к материнской плате и ставить по указаниям производителя.

Например, ASUS почти всегда рекомендует ставить память во второй слот.


Включение XMP профилей

Память с высокой частотой недостаточно просто установить в материнскую плату, чтобы она заработала на заявленной скорости. Как правило, скорость ограничится стандартной частотой для вашего процессора и материнской платы. В моем случае это 2400 МГц.

Чтобы активировать для ОЗУ скорость работы, которая записана в XMP профиле, надо зайти в BIOS и в разделе, посвященном настройке памяти, включить нужный XMP профиль. Вот так это выглядит на материнской плате MSI B450-A PRO MAX.


Тестирование разных режимов работы памяти

А теперь давайте протестируем память в разных режимах работы. Главной целью тестов будет разница работы в одно- и двухканальных режимах и разгоне.

Тестовая система:

  • Процессор: Ryzen 5 1600 с разгоном до 4000 МГц
  • Материнская плата: MSI B450-A PRO MAX
  • Память: два двухранговых модуля CRUCIAL Ballistix Sport LT BLS16G4D30AESC, объемом по 16 Гб. XMP профиль — 2933 МГц. Разгон — 3400 МГц с настроенными таймингами и субтаймингами
  • Видеокарта: GeForce GTX 1060 6 Гб

Начнем с тестирования пропускной способности чтения ОЗУ в AIDA64, в Мб/сек.
На графиках одноканальный режим работы отмечен как (S), а двухканальный — как (D), вместе с частотой работы памяти.

ОЗУ в двухканале прилично выигрывает.

Тестирование в архиваторе WinRAR 5.40 преподносит первый сюрприз. Одна планка памяти в разгоне до 3400 МГц работает быстрее, чем две на частоте 2933 МГц.

Архиватор 7-Zip 19.0, итоговая скорость распаковки в MIPS. Опять одна планка в разгоне обошла две на 2933 МГц.

Скорость работы архиваторов имеет важное практическое значение — чем она быстрее, тем быстрее будут устанавливаться программы и игры.


Из игр я выбрал Assassin’s Creed Odyssey и Shadow of the Tomb Raider. Для минимизации воздействия видеокарты на результаты я отключил сглаживание и выставил разрешение в 720p. 

В Assassin’s Creed Odyssey даже при 50 % разрешения кое-где производительность упиралась в GeForce GTX 1060, ее загрузка доходила до 99 %.

Более быстрая видеокарта позволила бы еще нагляднее увидеть прирост производительности от режимов работы ОЗУ.

Assassin’s Creed Odyssey, средний FPS. Одна планка ОЗУ, работающая с разгоном, сумела обогнать две планки в двухканале, на частоте 2400 МГц.

Shadow of the Tomb Raider, DX12, средний FPS. Картина повторяется, и одна планка памяти в разгоне быстрее, чем две низкочастотные.

Демонстрация плавности геймплея в Shadow of the Tomb Raider с одним модулем ОЗУ на 3400 МГц. Надо учесть, что запись съела пару кадров результата.


Выводы

В моих тестах один двухранговый модуль памяти на 16 Гб в разгоне обогнал в архиваторах модули с частотой 2933 МГц, работающие в двухканале. А в играх обогнал модули, работающие с частотой 2400 МГц.

Это значит, что вы можете купить быстрый модуль на 16 Гб и добавить еще 16 Гб, когда его станет не хватать.

Но самый идеальный вариант компоновки памяти — два одинаковых модуля в двухканальном режиме.

И совсем хорошо, если вы потратите немного времени на ее разгон. Благо, есть много хороших гайдов на эту тему.

Цены в блоге из DNS в Москве.

UserBenchmark: RAM Speed ​​Test Tool

75%

6 секунд назад

9 секунд назад AO1P32MCST2-BW4S 4x16GB

16 секунд назад R009D408GX2-4400C19A 2x8GB

3

B 9 секунд назадCKC43 39%

7233 C 38 секунд

NS

0 секунд назад Fury DDR3 1600 C10 2x8GB 60% Авианосец 70%
1 секунда назад Unknown 4×2000
2 секунды назад CMW32GX4M4D3600C18 4x8GB 72% Атомная подводная лодка 40%
6 секунд назадHyperX DDR4 3000

6 секунд назадHyperX DDR4 3000 8 секунд назад HyperX DDR4 3200 C16 1x8GB 44% Атомная подводная лодка 67%
8 секунд назад HyperX DDR4 3200 C16 2x8GB 88% 88% 88% 90% Атомная подводная лодка 43%
13 секунд назадTEAMGROUP-UD4-3200 2x8GB 103% Атомная подводная лодка 85%
15 секунд назад HyperX DDR4 3200 C16 2x8GB 113%

80% Авианосец 54%
17 секунд назадVengeance LP DDR3 1600 C10 2… 60% Battleship 83%
17 секунд назад CT16G4SFD8266.C16FD1 2x16GB 78% Ствол дерева 10%G 9 .. 109% Ствол дерева 50%
18 секунд назад3000 C16 Series 2x8GB 82% Авианосец 39%
Ствол дерева 46%
20 секунд назад F4 DDR4 3200 C16 2x16GB 75% Авианосец 52%
21 секунда назад 9HP826D

Ствол дерева 63%
21 секунду назад Неизвестно 2×4 ГБ 28% Ствол дерева 53%
23 секунды назадFury DDR3 1866 C10 2x8GB 56% Battleship 38%
23 секунды назадVengeance LPX DDR4 3600 C18… 125% Атомная подводная лодка 88%
26 секунд назад UFO 64%
34 секунды назад 3200 C16 Series 2x8GB 107% Атомная подводная лодка 53%
38 секунд назадHypercraft 9000 76%
41 с
46 секунд назад Неизвестно 2x2GB 9% Гидроциклы 45%
900 05 53 секунды назадSP008GXLZU266BSA 2x8GB 82% Атомная подводная лодка 53%
55 секунд назадVengeance LPX DDR4 3000 C15… 94% Атомная подводная лодка 59%
58 секунд назадVengeance LPX DDR4 3000 C16 … 88% Атомная подводная лодка 68%
11% Ствол дерева 42%
1 минуту назад HyperX Fury 2666 C16 2x8GB 75% Авианосец 57%
57%
05 1 мин…
103% UFO 67%
1 минута назад HyperX DDR4 3200 C16 4x16GB 111% Авианосец 59%
59%
39% Авианосец 57%
1 минуту назад Vengeance LPX DDR4 3200 C16 … 96% Авианосец 65%
1 мин назадM8FE 2x8GB 28% Ствол дерева 2%
1 мин. Назад Скоростной катер 37%
1 мин. Назад Vengeance LPX DDR4 3600 C18 … 99% Авианосец 44%
1 мин. НазадBL16R .36CM8FB1 2x16GB 93% Атомная подводная лодка 47%
1 мин. Назад % Ствол дерева 20%
1 мин. Назад 99U5624-003.A00G 1x8GB 42% Ствол дерева 66%
1 мин. НазадTEAMGROUP 9-UD4 % Battleship 41%
1 мин. НазадACR26D4S9S8ME-8 1x8GB 42% Ствол дерева 61%
1 мин. Назад DDR4 LPX… 95% Атомная подводная лодка 61%
1 минуту назадVengeance LPX DDR4 2400 C14 … 78% Авианосец 74%
08-

34 90%

Сравнение скорости памяти камеры и тесты производительности для карт SD и CF

Какая самая быстрая карта памяти для моей камеры?

Мы тестируем SD-карты и CF-карты в камерах, чтобы оценить производительность. Быстрые карты позволяют камере делать больше снимков за меньшее время, а также быстрее передавать изображения на компьютер. Покупка быстрой карты не гарантирует высокую скорость, ваша камера может быть ограничивающим фактором. Мы тестируем различные карты памяти в каждой камере, чтобы найти лучшие.Мы также тестируем несколько устройств чтения карт с разными картами памяти, чтобы определить, какие устройства лучше всего подходят для каждой карты памяти.

Новинка: какая карта памяти SD, CF, CFast или XQD самая быстрая?

Тесты скорости памяти камеры

Каждая камера тестируется с использованием различных карт памяти. Большинство камер используют карты Secure Digital (SD), в то время как другие по-прежнему используют CompactFlash (CF) или и то, и другое. Мы тестируем скорость записи (в МБ / с), а также непрерывную съемку (максимальное количество кадров за 30 секунд) и рекомендуем карты, которые работают лучше всего, а также те, которые предлагают лучшее качество.Ниже представлены самые последние протестированные камеры.

Nikon Z6 Сравнение самых быстрых карт XQD Тест 10 карт XQD в новой беззеркальной полнокадровой камере Nikon Z6 оценивает, как карты памяти влияют на производительность непрерывной съемки.
6 декабря 2018 г., 17:50

Сравнение SD-карт Canon EOS R В этом тесте 113 карт памяти UHS-II и UHS-I в новой полнокадровой беззеркальной цифровой камере Canon EOS R оценивается скорость записи и производительность непрерывной съемки.
25 октября 2018 г., 10:22

Тест скорости карты Nikon Z7 XQD Новая полнокадровая беззеркальная камера Z7 от Nikon протестирована с несколькими картами XQD для проверки скорости записи и производительности непрерывной съемки.
12 октября 2018 г., 13:40

См. Другие тесты скорости карты памяти камеры.

Обзоры карт памяти

и контрольные тесты

Обзоры карт

Secure Digital и CompactFlash от нескольких брендов. Обзоры SD-карт включают карты UHS-I и UHS-II, SDHC, SDXC и microSD. CompactFlash тестирует новейшие высокоскоростные карты, совместимые с UDMA 7. В каждый обзор включены подробные тесты скорости считывателей карт, а также тесты в камере. Какая карта самая быстрая?

Последние обзоры карт памяти:

.Тест памяти

— проверьте скорость памяти вашего ПК

Расширенный тест памяти является частью приложения PerformanceTest и предназначен для проверки нескольких факторов, которые влияют на скорость доступа к данным в памяти ПК.

Вы можете думать о компьютерной памяти как о длинной непрерывной полосе. Полоса состоит из миллионов (иногда миллиардов) слотов. Каждый слот имеет уникальное идентифицирующее значение, называемое его адресом. На 32-битных платформах Windows размер каждого слота составляет 32 бита или 4 байта (1 байт = 8 бит).Windows перемещает данные на эту полосу и с нее по мере необходимости. Например, запуск исполняемого файла с диска заставляет Windows копировать файл с диска в память, а затем запускать исполняемый файл оттуда.

Один принцип дизайна памяти известен как пространственная локальность. Это говорит о том, что адреса памяти, которые находятся рядом друг с другом, обычно ссылаются друг на друга во времени. Память разработана с учетом этого принципа, и поэтому мы должны ожидать уменьшения времени доступа к памяти, если мы постоянно запрашиваем адреса, которые находятся далеко друг от друга.

Пользователи могут выбирать между двумя типами теста — скорость памяти на размер шага доступа и скорость памяти на размер блока

Скорость памяти на размер шага доступа
Первый тип теста «Скорость памяти на размер шага доступа» обращается к
большой блок памяти с шагом разного размера. Во-первых, он проходит через
блок памяти последовательно, обращаясь к каждому значению. Далее он проходит через
тот же блок снова, но на этот раз он обращается к каждому второму значению.На
в этом случае он дважды проходит через блок, чтобы получить доступ к одному и тому же
количество данных в качестве начального шага. Далее он проходит через тот же блок
опять же, за исключением того, что на этот раз он обращается к каждому четвертому значению и поэтому делает четыре
проходит. И так далее, пока не будет достигнут определенный максимальный размер шага.

Размер блока памяти, используемого для этого теста, составляет четверть от
объем системной ОЗУ или 512 МБ, в зависимости от того, что меньше. Размер ступеней
варьируются от 1 (непрерывный последовательный доступ) до 1/65536 размера
блок памяти.

Скорость памяти на размер блока
Когда компьютерная программа хочет использовать часть памяти для хранения
data, он запрашивает у Windows необходимый объем памяти.
Windows выделяет память программе (если системные ресурсы не
очень низкий) и возвращает запрашивающей программе адрес первого
слот памяти в выделенном блоке. Возможно, что некоторые программы могут
запрашивать очень большие объемы памяти. Тест «Скорость памяти на размер блока»
как и тест «Скорость памяти на размер шага доступа», состоит из множества
шаги.На каждом этапе теста PerformanceTest запрашивает блок
памяти и проходит через блок измерения скорости доступа. Однако на
на каждом последующем шаге размер запрошенной памяти увеличивается, пока
наконец, запрашивается блок, близкий к размеру системной RAM. В этом
таким образом можно наблюдать разную скорость доступа для разных
размеры блоков.

Обычно можно увидеть падение скорости, когда блок больше не
помещается в кеш уровня 1, затем снова, когда он больше не помещается в кеш уровня 2
и возвращается в основную память.В случае, когда системные ресурсы малы,
замена на диск может потребоваться даже для очень больших блоков.

Настройки NUMA

Неравномерный доступ к памяти (NUMA) — это конструкция компьютерной памяти, используемая на материнских платах с несколькими процессорами, где время доступа к памяти зависит от расположения памяти относительно процессора. Каждый ЦП может иметь свою собственную локальную память с малой задержкой, но при этом может иметь доступ к удаленной памяти других ЦП. Сделать хорошо
При использовании NUMA программные приложения должны быть осведомлены о NUMA и закодированы таким образом, чтобы предпочитать использование локальной памяти удаленной.Настройки в PerformanceTest позволяют пользователю принудительно запускать тест RAM на конкретном процессоре, одновременно получая доступ к RAM, подключенной к другому процессору.

Совместимость типов ОЗУ
Тест памяти PerformanceTest работает с различными типами ОЗУ ПК, включая SDRAM, EDO, RDRAM, DDR, DDR2, DDR3 и DDR4 на всех скоростях шины.

Графики скорости RAM
Результаты всех завершенных тестов могут быть графически отображены с помощью наших красочных пользовательских графических компонентов.

.

Системная RAM | HowStuffWorks

Скорость ОЗУ системы контролируется шириной шины и скоростью шины . Ширина шины относится к количеству бит, которые могут быть отправлены в ЦП одновременно, а скорость шины относится к количеству раз, когда группа битов может быть отправлена ​​каждую секунду. Цикл шины происходит каждый раз, когда данные перемещаются из памяти в ЦП. Например, 32-разрядная шина 100 МГц теоретически способна отправлять 4 байта (32 бита, разделенные на 8 = 4 байта) данных в ЦП 100 миллионов раз в секунду, в то время как 16-разрядная шина 66 МГц может отправлять 2 байта данных 66 миллионов раз в секунду.Если вы посчитаете, вы обнаружите, что простое изменение ширины шины с 16 бит до 32 бит и скорости с 66 МГц до 100 МГц в нашем примере позволяет обрабатывать в три раза больше данных (400 миллионов байтов против 132 миллионов байтов). для передачи в ЦП каждую секунду.

Этот контент несовместим с этим устройством.

На самом деле оперативная память обычно не работает с оптимальной скоростью. Задержка радикально меняет уравнение. Задержка относится к количеству тактов, необходимых для чтения небольшого количества информации.Например, оперативная память с частотой 100 МГц способна отправить бит за 0,00000001 секунду, но для запуска процесса чтения первого бита может потребоваться 0,00000005 секунд. Чтобы компенсировать задержку, процессоры используют специальный метод, называемый пакетный режим .

Объявление

Пакетный режим зависит от ожидания, что данные, запрошенные ЦП, будут сохранены в последовательных ячейках памяти . Контроллер памяти ожидает, что все, над чем работает ЦП, будет продолжать поступать из той же серии адресов памяти, поэтому он считывает несколько последовательных битов данных вместе.Это означает, что только первый бит подвержен полному эффекту задержки; чтение последовательных бит занимает значительно меньше времени. Номинальный пакетный режим памяти обычно выражается в виде четырех чисел, разделенных тире. Первое число указывает количество тактов, необходимых для начала операции чтения; второе, третье и четвертое числа говорят вам, сколько циклов необходимо для чтения каждого последовательного бита в строке, также известной как словарная строка . Например: 5-1-1-1 сообщает вам, что требуется пять циклов для чтения первого бита и один цикл для каждого бита после этого.Очевидно, что чем ниже эти числа, тем лучше производительность памяти.

Пакетный режим часто используется в сочетании с конвейерной обработкой , еще одним средством минимизации эффектов задержки. Конвейерная обработка организует получение данных в виде конвейерного процесса. Контроллер памяти одновременно считывает одно или несколько слов из памяти, отправляет текущее слово или слова в ЦП и записывает одно или несколько слов в ячейки памяти. Совместное использование пакетного режима и конвейерной обработки может значительно снизить задержку, вызванную задержкой.

Так почему бы вам не купить самую быструю и самую большую память, которую вы можете получить? Скорость и ширина шины памяти должны соответствовать системной шине. Вы можете использовать память, предназначенную для работы на частоте 100 МГц в системе с частотой 66 МГц, но она будет работать на частоте шины 66 МГц, поэтому нет никаких преимуществ, а 32-разрядная память не поместится в 16-разрядной системе. автобус.

Даже с широкой и быстрой шиной для передачи данных с карты памяти в ЦП требуется больше времени, чем требуется ЦП для фактической обработки данных.Вот тут и пригодятся тайники.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

CVF 2×31,5GB 59% Авианосец 50%
1 минуту назадBL8G32C16U4BL.M8FE 2x8GB 88% Атомная подводная лодка
Январь 2025
ПнВтСрЧтПтСбВс
 12345
6789101112
13141516171819
20212223242526
2728293031 
2025 © Все права защищены. Карта сайта