Разное

Теория вероятности в математике: Теория вероятности формулы и примеры решения задач

Содержание

Теория вероятности формулы и примеры решения задач

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. .
  2. Вероятность невозможного события равна 0, т.е. .
  3. Вероятность достоверного события равна 1, т.e. .
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. .

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные  из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

   

Ответ: 0,4

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов  В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

   

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

   

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Решение:

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Задача 3.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Решение:

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

.

Ответ: 0,06.

Задача 4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Задача 5.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

 

 

 

 

 

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

формулы и примеры решения задач :: SYL.ru

«Случайности не случайны»… Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности – это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является «событие». События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий — их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1: Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А1В1С1.

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А1ВС1υ АВ1С1 υ А1В1С.

А1ВС1 – это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события – это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

Р обозначает вероятность события А.

А – собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А1.

m – количество возможных благоприятных случаев.

n – все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого — со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить Wn(A). Формула ничем не отличается от классической:

Wn(A)=m/n.

Если классическая формула вычисляется для прогнозирования, то статистическая – согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

Wn(A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В — n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт – это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n — это все элементы, m – элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

Anm=n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Рn = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

Anm=n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов — формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

Pn(m)=Cnm×pm×qn-m.

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

q=1-p

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица – это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q – число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P6(0)=C06×p0×q6=q6=(0,8)6=0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

Cnm=n!/m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P6(2)=C62×p2×q4 = (6×5×4×3×2×1)/(2×1×4×3×2×1)×(0,2)2×(0,8)4=15×0,04×0,4096=0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

Pn(m)=λm/m!×e(-λ).

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3: На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак — это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р100000(5) = 105/5! Х е-10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е= lim n->∞(1-λ/n)n.

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Рn(m)= 1/√npq x ϕ(Xm).

Xm = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Задание 4: Рекламный агент раздает 800 листовок. Согласно статистическим исследованиям, каждая третья листовка находит своего потребителя. Какова вероятность того, что сработает ровно 267 рекламных листовок?

n = 800;

m = 267;

p = 1/3;

q = 2/3.

Сначала найдем Xm, подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р800(267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) – условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) – условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» — формула Байеса, примеры решений задач с которой ниже.

Задание 5: На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором – 60%, на третьем – 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй – 4%, и у третьей – 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В1 – телефон, который изготовила первая фабрика. Соответственно, появятся вводные В2 и В3 (для второй и третьей фабрик).

В итоге получим:

Р (В1) = 25%/100% = 0,25; Р(В2) = 0,6; Р (В3) = 0,15 – таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В1) = 2%/100% = 0,02;

Р(А/В2) = 0,04;

Р (А/В3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

Основы теории вероятностей и математической статистики

ВВЕДЕНИЕ

Многие вещи нам непонятны не потому, что
наши понятия слабы;

но потому, что сии вещи не входят в круг наших
понятий.

Козьма Прутков

Основная цель изучения математики в средних
специальных учебных заведениях состоит в том,
чтобы дать студентам набор математических
знаний и навыков, необходимых для изучения
других программных дисциплин, использующих в той
или иной мере математику, для умения выполнять
практические расчеты, для формирования и
развития логического мышления.

В данной работе последовательно вводятся все
базовые понятия раздела математики «Основы
теории вероятностей и математической
статистики», предусмотренные программой и
Государственными образовательными стандартами
среднего профессионального образования
(Министерство образования Российской Федерации.
М., 2002г.), формулируются основные теоремы, большая
часть которых не доказывается. Рассматриваются
основные задачи и методы их решения и технологии
применения этих методов к решению практических
задач. Изложение сопровождается подробными
комментариями и многочисленными примерами.

Методические указания могут быть использованы
для первичного ознакомления с изучаемым
материалом, при конспектировании лекций, для
подготовки к практическим занятиям, для
закрепления полученных знаний, умений и навыков.
Кроме того, пособие будет полезно и студентам-
старшекурсникам как справочное пособие,
позволяющее быстро восстановить в памяти то, что
было изучено ранее.

В конце работы приведены примеры и задания,
которые студенты могут выполнять в режиме
самоконтроля.

Методические указания предназначены для
студентов заочной и дневной форм обучения.

ОСНОВНЫЕ ПОНЯТИЯ

Теория вероятностей изучает объективные
закономерности массовых случайных событий. Она
является теоретической базой для математической
статистики, занимающейся разработкой методов
сбора, описания и обработки результатов
наблюдений. Путем наблюдений (испытаний,
экспериментов), т.е. опыта в широком смысле слова,
происходит познание явлений действительного
мира.

В своей практической деятельности мы часто
встречаемся с явлениями, исход которых
невозможно предсказать, результат которых
зависит от случая.

Случайное явление можно охарактеризовать
отношением числа его наступлений к числу
испытаний, в каждом из которых при одинаковых
условиях всех испытаний оно могло наступить или
не наступить.

Теория вероятностей есть раздел математики, в
котором изучаются случайные явления (события) и
выявляются закономерности при массовом их
повторении.

Математическая статистика — это раздел
математики, который имеет своим предметом
изучения методов сбора, систематизации,
обработки и использования статистических данных
для получения научно обоснованных выводов и
принятия решений.

При этом под статистическими данными
понимается совокупность чисел, которые
представляют количественные характеристики
интересующих нас признаков изучаемых объектов.
Статистические данные получаются в результате
специально поставленных опытов, наблюдений.

Статистические данные по своей сущности
зависят от многих случайных факторов, поэтому
математическая статистика тесно связана с
теорией вероятностей, которая является ее
теоретической основой.

I. ВЕРОЯТНОСТЬ. ТЕОРЕМЫ СЛОЖЕНИЯ И
УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ

1.1. Основные понятия комбинаторики

В разделе математики, который называется
комбинаторикой, решаются некоторые задачи,
связанные с рассмотрением множеств и
составлением различных комбинаций из элементов
этих множеств. Например, если взять 10 различных
цифр 0, 1, 2, 3,: , 9 и составлять из них комбинации, то
будем получать различные числа, например 143, 431,
5671, 1207, 43 и т.п.

Мы видим, что некоторые из таких комбинаций
отличаются только порядком цифр (например, 143 и
431), другие — входящими в них цифрами (например, 5671
и 1207), третьи различаются и числом цифр (например,
143 и 43).

Таким образом, полученные комбинации
удовлетворяют различным условиям.

В зависимости от правил составления можно
выделить три типа комбинаций: перестановки,
размещения, сочетания
.

Предварительно познакомимся с понятием факториала.

Произведение всех натуральных чисел от 1 до n
включительно называют n-факториалом и
пишут .



Пример 1.

Вычислить: а) ; б) ; в) .

Решение. а) .

б) Так как и
, то можно
вынести за скобки

Тогда получим

.

в) .



Перестановки.

Комбинация из n элементов, которые отличаются
друг от друга только порядком элементов,
называются перестановками.

Перестановки обозначаются символом Рn,
где n- число элементов, входящих в каждую
перестановку. (Р — первая буква французского
слова permutation— перестановка).

Число перестановок можно вычислить по формуле

или с помощью факториала:

Запомним, что 0!=1 и 1!=1.

Пример 2. Сколькими способами можно
расставлять на одной полке шесть различных книг?

Решение. Искомое число способов равно числу
перестановок из 6 элементов, т.е.

.



Размещения.

Размещениями из m элементов в n в каждом
называются такие соединения, которые отличаются
друг от друга либо самими элементами (хотя бы
одним), либо порядком из расположения.

Размещения обозначаются символом , где m-
число всех имеющихся элементов, n— число
элементов в каждой комбинации. (А-первая
буква французского слова arrangement, что означает
«размещение, приведение в порядок»).

При этом полагают, что nm.

Число размещений можно вычислить по формуле

,

т.е. число всех возможных размещений из m
элементов по n равно произведению n последовательных
целых чисел, из которых большее есть m.

Запишем эту формулу в факториальной форме:

.



Пример 3. Сколько вариантов распределения
трех путевок в санатории различного профиля
можно составить для пяти претендентов?

Решение. Искомое число вариантов равно числу
размещений из 5 элементов по 3 элемента, т.е.

.



Сочетания.

Сочетаниями называются все возможные
комбинации из m элементов по n, которые
отличаются друг от друга по крайней мере хотя бы
одним элементом (здесь m и n-натуральные
числа, причем n m).

Число сочетаний из m элементов по n
обозначаются
(С-первая буква французского слова combination
— сочетание).

В общем случае число из m элементов по n
равно числу размещений из m элементов по n,
деленному на число перестановок из n
элементов:

Используя для чисел размещений и перестановок
факториальные формулы, получим:

Пример 4. В бригаде из 25 человек нужно
выделить четырех для работы на определенном
участке. Сколькими способами это можно сделать?

Решение. Так как порядок выбранных четырех
человек не имеет значения, то это можно сделать способами.

Теория вероятности простыми словами, как рассчитать вероятность событий

Теория вероятностей (тервер) – раздел математики, который изучает случайные события и их свойства. Ознакомиться с ней нужно, чтобы понимать, как принимать взвешенные решения. Ведь зная статистические данные и анализируя закономерности, можно «предсказать» исход события.

Я не станут грузить вас сложными формулами – желающие углубленно заняться тервером могут сделать это по книге В. Е. Гмурмана «Теория вероятностей и математическая статистика». В статье покажу простые примеры для понимания зависимых и независимых событий, расскажу о состоянии неопределенности и интуитивном знании.

Материал полезен широкому кругу читателей.

Коротко о теории вероятностей

Вероятность в зависимых событиях

Вы решаете отправить в подарок другу балык. Знаете номер дома, подъезд, этаж. Курьер просит называть номер квартиры. С мучительными усилиями вспоминаете, что в доме по три двери на площадку, но дальше – туман. Давайте рассчитаем, сможет ли курьер попасть в нужную квартиру с первого раза.

Имеем три варианта развития событий:

  1. Курьер звонит в первую (1) дверь.
  2. Курьер звонит во вторую (2) дверь.
  3. Курьер звонит в третью (3) дверь.

Но в истории участвует еще один человек: ваш друг. И событийность в его случае выглядит так:

  • Друг за первой (1) дверью.
  • Друг за второй (2) дверью.
  • Друг за третьей (3) дверью.

Прежде чем пойти дальше, введем определение вероятности – количество благоприятных исходов к вероятному числу событий.

Теперь соберем данные в таблицу (таблица 1). Всего — 9 исходов. Отметим положительные (курьеру откроет друг) – их 3. Получается, что вероятность с первого раза позвонить в дверь к нужному человеку – 3/9 или 1/3. Если вам нравится видеть вероятность в процентах, умножьте результат на 100%.

Таблица 1 – Девять исходов, три благоприятных

Представим, что курьер ошибся, и за дверью оказалась сногсшибательная блондинка в коротком халате. Для курьера исход положительный, для вас – нет. Поэтому считаем новую вероятность:

  1. Курьер звонит в первую (1) квартиру.
  2. Курьер звонит во вторую (2) квартиру.

То же самое с другом:

  • Друг ждет в первой (1) квартире.
  • Друг ждет во второй (2) квартире.

Теперь у нас 4 варианта и 2 – выигрышные (таблица 2). Вероятность со второго раза попасть в квартиру друга – 1/2. Она уменьшилась из-за зависимости событий: мы уже исключили неблагоприятный исход и расчёт нужно производить заново. Если курьер настолько невезуч, что промахнется во второй раз, вероятность попасть по адресу в третий раз – 100%. Опытным путем мы проверили, что за двумя предыдущими дверьми балык никто не ждет.

Таблица 2 Четыре исхода, два благоприятных

Пример с курьером — начальный уровень тервера. Он применим для бытовых нужд: предугадать вероятность побочного эффекта от антибиотиков, выбрать из разнообразия бабушкиных пирожков пирожок с повидлом и др.

На экзамене по теории вероятности советский математик и автор учебника Елена Вентцель спросила:

— Кому все понятно? Поднимите руки.

В аудитории живо взметнулся лес рук.

— Отлично! Остальные свободны, оценка – пять баллов! Поднявшие руки – останьтесь. За годы преподавания я так и не поняла большей части тервера. Рада, что вы мне все сейчас объясните.

Байка с математического факультета

Вероятность в независимых событиях

Независимые события не влияют друг на друга: количество благоприятных исходов в каждом новом событии не меняется.

Регина Тодоренко и Леся Никитюк в рамках программы «Орел и Решка» приехали в США. Обе хотят провести уик-энд «по богатому» и кидают монетку. Леся поставила на орла, Регина – на решку. Вероятность уехать на собственном авто у девушек одинакова: 1/2. На это раз повезло Лесе. Впрочем, как в следующей поездке тоже.

Регина негодует, почему тервер работает не в ее сторону

Теперь определим, могут ли независимые события происходить подряд с одним и тем же исходом. Лесе везло уже два раза и выпадал «орел». Повезет ли в третий раз? Составим список возможных исходов:

  1. Орел, орел, орел.
  2. Орел, орел, решка.
  3. Орел, решка, орел.
  4. Орел, решка, решка.
  5. Решка, орел, орел.
  6. Решка, орел, решка.
  7. Решка, решка, орел.
  8. Решка, решка, решка.

По результату видно: вероятность определенной последовательности каждый раз меньше на вероятность одного события. То есть вероятность определенной последовательности – произведение вероятностей каждого события. Если в одном событии вероятность 1/2, то в трех: 1/2*1/2*1/2=1/8.

Как человек принимает решения в состоянии неопределённости

Часть мозга, которая ответственна за оценку ситуации связана с медиаторной системой — центром мотивационных и эмоциональных процессов. Логика и эмоции часто конфликтуют между собой, поэтому решение принимается случайным образом.

У моей подруги аллергия на виноград. Но в студенчестве она не могла отказаться от бокала вина на вечеринке. Часто ее дерзость оставалась безнаказанной и организм нормально воспринимал аллерген. Реже протестовал: у подруги появлялись отеки на лице и в горле. В эти моменты ее левое полушарие отчаянно искало закономерность и просчитывало вероятность наступления аллергической реакции, правое же шептало: «Не пей, лицо распухнет!». Она могла вывести количество благоприятных исходов математическим путем и пить вино без опасений, но эмоции оказались сильней. Подруга раз и навсегда отказалась от любых продуктов с виноградом.

Хороший пример принятия решений описан в книге Млодинова «(Не) совершенная случайность». Допустим, вы отправили рассказ в четыре издательства. От каждого получили отказ. На эмоциях вы придете к мысли: рассказ ужасный! Хотя, если изучить биографии популярных писателей, может оказаться, что дело не в вас. Отказы в публикации получали Стивен Кинг, Джоан Роулинг, Виктор Франкл. Такие истории случались вовсе не из-за отсутствия у них дара: просто в одном издательстве редактор не понял тонкую философию автора, в другом – спешил домой и проставил визу не читая.

Почему интуитивное знание всегда противоречит статистике

Моя бабушка считает: в Албании убивают на каждом шагу. Хотя в стране она не была и новостей о не слышала: ей так кажется интуитивно. Наверняка и вы не раз испытывали подобное чувство. Оно называется интуитивное знание – внутреннее убеждение, что собственная оценка более правдива, чем официальные источники и статистика.

Всего 127 убийств на 100 000 человек

Классическое исследование на тему интуитивного знания провели Даниэль Канеман и Амос Тверский. Они дали задание группе студентов: на основании портрета, оценить утверждения с таблицы как более (1 балл) и менее (8 баллов) вероятные (таблица 3).

Портрет выглядел так: «Линда, возраст – немного за 30. Умная, говорит, что думает. В колледже изучала философию. Тогда же выступала против социального неравенства, дискриминации и использования ядерного оружия. Не замужем».

Таблица 3

По портрету логично предположить, что Линда участвует в феминистском движении. Но студенты принимали решения интуитивно, что привело к ошибке. Вероятность, что Линда работает в банке и принимает участие в феминистском движении больше вероятности работы в банке.

Посмотрите на таблицу: вероятность работы в банке и увлечение феминистским движением – 4,1 балл. Но первое (работа в банке) и второе (феминистское движение) в сумме дают 8,3 балла. Согласно терверу, вероятность, что произойдут оба события не может быть выше, чем вероятность каждого события по отдельности. Главное утверждение (4,1 балла) содержит 2 события и является единым. В интуитивном решения правило тервера нарушено. Это доказывает — наши убеждения часто являются ложными.

В дальнейшем проводились множественные эксперименты, которые подтвердили догадку Канемана.

Вместо заключения

Теория вероятностей почти всегда разбивается о «случай», продиктованный убеждением или эмоцией отдельного человека. Поэтому использование ее в повседневной жизни может не оправдать ожиданий. Но выбирать вам! Хорошего дня!

Теория вероятности ℹ️ формула и примеры для чайников, задачи с решениями, как найти классическую вероятность в математике, как обозначается и в чем выражается вероятность

Развитие науки


Изучение вероятности наступления того или иного события берёт своё начало со Средних веков. Первоначально наблюдаемые закономерности не имели математического описания и основывались на различных эмпирических фактах. Ранние работы были непосредственно связаны с азартными играми. Французские учёные Паскаль и Ферма пытались выявить и рассчитать закономерности при бросании костей.


Независимо от них этим вопросом занимался и голландский физик Гюйгенс. В своей работе он оперировал такими понятиями, как величина шанса, математическое ожидание, цена случайности. Он первый, кто попробовал применить теоремы сложения и умножения в описание вероятности.


Фундаментальное значение для развития науки имели труды Бернулли, Байеса, Лапласа и Пуассона. Их стараниями были сформулированы и доказаны предельные теоремы, предложены первые формулы и примеры. В теории вероятности начали использовать анализ ошибочного наблюдения. Но лишь Карл Гаусс детально смог разобраться в нормальном распределении случайной величины.


В XIX веке русские и европейские учёные смогли доказать сделанные ранее предложения. В первую очередь это касалось закона больших чисел и центральной предельной теоремы. Формальная система для описания теории была принята в 1933 году. Предложил её академик СССР Андрей Колмогоров. Руководствуясь идеями теории множеств, меры и интегрирования, он смог систематизировать аксиомы и с их помощью описать классическую теорию вероятности. На основании его работ была создана новая теория — случайных процессов.


В его систему входит:

  • алгебра событий — состоит из множества подмножеств, называемых событиями и их пространства;
  • существование возможности появления событий — каждому случаю приписывается в соответствие вещественная вероятность наступления;
  • нормировка — состояние, при котором вещественное число имеет вероятность свершения равное единице;
  • аддитивность — если 2 события не пересекаются, их вероятность находится суммированием.


Объекты, удовлетворяющие системе, были названы полем вероятности (вероятностным пространством). Было принято, что аксиомы не могут противоречить друг другу. Аксиоматизация позволила привести все предположения к строгому математическому виду и стала восприниматься как один из разделов математического вычисления.


Предметом изучения науки являются закономерности, появляющиеся в случайных событиях, результат которых нельзя установить заранее. Но не все эксперименты можно изучать с помощью теории, а лишь те, что повторяются при одних и тех же условиях.


Существует понятие «статистической устойчивости». Если существует некоторое событие «А», которое может наступить в результате события или не произойти, то часть экспериментов должна стабилизироваться. При этом с увеличением числа экспериментов вероятность повторения стремится к определённому числу Р(А). Оно и является характеристикой, определяющей степень возможности наступления события «А».


Объяснить основы теории вероятности для чайников можно с помощью классических понятий:

  1. Вероятность, что событие «А» сможет произойти описывается выражением: Р (А) = m/n, где: n — общее количество исходов эксперимента, имеющих равные возможности; m — число исходов, соответствующих событию «А».
  2. Для геометрического определения вместо чисел используется мера. В числитель формулы подставляется показатель, выражающий количество благоприятных исходов наступления рассматриваемого события, а в знаменатель — геометрическая мера. Например, ширина, плотность, объём.
  3. При расчётах принимается, что полная группа событий образует вероятность равную единице: P (A1) + P (A2) + + P (An) = 1, при этом сумма противоположных событий также будет равна одному.
  4. Шанс, что одно из двух несовместимых событий обязательно случится, определяется сложением этих вероятностей. Это формулировка справедлива и к любому количеству ожидаемых исходов: P (C +B +A) = Р(С) + Р (B) +P (A).
  5. Исход, что любое из двух событий сбудется, равен вероятности суммы без учёта возможного их совместного появления: P (А+В) = Р (А) + Р (B) — P (АВ).


Основополагающими формулами являются выражения Байеса и Бернулли.


Согласно первому, если существует гипотеза «Вн», а событие уже наступило, вероятность её правдивости определяется как Pа (Вн) = Р (Вн) * Рв (А) / Р (А). Это выражение ещё называют формулой полной вероятности. Равенство же Бернулли помогает оценить вероятность, что конкретное событие «А» случится n количество раз при m вариантах: P = C n * p n * qn m.

Алгоритм решения


Теория вероятностей используется, когда необходимо сделать прогноз на выпадение того или иного шанса в эксперименте. Случайность является основным понятием предмета. Она обозначает явление, для которого невозможно точно вычислить периодичность наступления, поэтому в задачах находят именно число возможностей. По своей сути вероятность — функция, способная принимать 3 значения:

  • ноль — ожидание никогда не выполнится;
  • единица — событие произойдёт при любых условиях;
  • паритет — существует равная возможность выполнения или невыполнения ожидания.


Чтобы высчитать случайность, рекомендуется придерживаться разработанного алгоритма. Следует внимательно изучить задание и определить, вероятность чего необходимо вычислить, а также события, от которых случайность будет изменяться. Определив схему задачи, подобрать формулу и, подставив в неё все имеющиеся данные, рассчитать шанс. Чтобы правильно определиться с нужной схемой, необходимо знать о количестве экспериментов, существовании между ними зависимости, возможности применения нескольких гипотез.


Для понятия принципа нахождения случайности часто предлагается к решению следующая задача. В закрытом ящике лежит 6 разноцветных перемешанных между собой шаров. Из них 2 красного цвета, 3 зелёного и 1 белый. Нужно посчитать, насколько шансов достать белый шар меньше, чем цветной.


Случайность доставания цветного шара обозначают как событие «А». Согласно определению вероятность «А» определяется отношением благоприятствующих шансов к общему числу исходов. Существует 6 различных возможностей вытянуть шар, из них 5 относятся к благоприятным, поэтому эксперимент покажет, что вероятность достать из ящика цветной шар будет составлять P = 5 / 6 = 0,83(3). Это и есть показатель оценки степени случайности.


Таким способом можно узнать различную вероятность любого исхода, не прибегая к собиранию статистики и её анализу, то есть решить задачу математически, как, например, следующую. В таксопарке используется 2 синих, 9 красных и 4 чёрных машины. Нужно определить, какая существует возможность приезда по вызову красного автомобиля. Решение простое. Так как всего имеется 15 машин, вероятность приезда именно красной составит Р = 9/15 или 0,6.

Теорема Муавра — Лапласа


Это предельное определение, предложенное Лапласом в 1812 году. В основе теоремы используется формула Бернулли, но применяется она к довольно большому количеству экспериментов. Суть её в следующем: если при независимых экспериментах n существует вероятность свершения случайного события N равная нулю или единице, при этом число испытаний равняется m, искомое значение близко к интегральной функции Лапласа.


Стандартные значения, соответствующие нормальному распределению, сведены в статистические таблицы. Взять их можно в решебниках задач по теории. Под приведёнными значениями понимается площадь кривой от нуля до числа x. Например, если придумать какую-либо величину площади между числами 0 и 2,34, согласно таблице она составит 0,49036.


При рассмотрении свершения m событий в n экспериментах существует вероятность, заключённая в определённом отрезке между значениями a и b, поэтому выражение для нахождения можно найти из формулы: Р(m) = (n! * pm * qn-m) / m!(n-m)!. Уравнение требует сложных и громоздких расчётов, поэтому, чтобы найти вероятность, в математике из формулы используют асимптотическое распределение. Но возможно это только при условии, что Р(m) неизменное, а число экспериментов будет стремиться к бесконечности.


Реальная формула, описывающая теорему сложна, поэтому используется приближённая:


Р(m) = 1 / ((2p*n*p*q)1/2) exp (-X2m/2).


Использовать её рекомендуют только при значениях событий больше 20, а экспериментов 100. Например, брак выпускаемых изделий составляет 15%. Поступает товар в упаковках по 100 штук. Нужно найти вероятность, что случайно взятая коробка будет укомплектована 13 бракованными изделиями. При этом число товара низкого качества в упаковке не превысит 20.


За испытание необходимо принять изготовление. Вероятность появления события, которое необходимо искать составит p = 0,15. Далее, находится случайность: n * p = 15 и n * p * q = 12,75. Исходные данные подставляют в формулу Лапласа:


Таким образом, примерно 9,5% упаковок от общего количества содержат 13 товаров плохого качества, а в 92% случаях число изделий с браком не превышает 20.

Сочетание взаимных событий


При рассмотрении задач может возникнуть вопрос, как различные события могут зависеть друг от друга. Для характеристики их взаимосвязи вводится понятие условная вероятность. Например, имеются 2 случайных исхода одного эксперимента «А» и «В». Тогда условной вероятностью первого события «А» при условии, что второе произошло, называется отношение P (AB) / P (B).


Необходимо определить, с какой вероятностью в семье с ребёнком-девочкой родится мальчик. За вероятность появления в семье двух мальчиков нужно взять «А», а за ребёнка противоположного пола событие «В». Существует 4 возможных исхода, поэтому справедливо будет записать: P (AB) = 1/4, P(B) = 3/4. Подставив эти значения в формулу можно рассчитать вероятность: P (A/B) = (1/4) / (3/4) = 0,3. Первый исход считается независимым от второго, если наступление события «В» не оказывает влияние.


Если же события взаимны, они влияют друг на друга. В этом случае используется их перемножение: P(AB) = P(A) *PB (А). Например, в пачке 26 лотерей, из которых 3 призовых. Нужно определить шанс, что первый билет будет призовой и вероятность, что второй билет также будет с выигрышем, но при условии, что первый билет уже убрали.


Для решения задачи вначале нужно найти шанс, что первый билет будет с выигрышем: P (A) = 3/26 = 0,115. Затем рассчитать вероятность двух выигрышей подряд: P(AB) = P(A) * P(B) = (3/26) * (2/25) = 0,009.


Это довольно простые задачи, но существуют задания, для решения которых понадобится применять несколько формул. Такой расчёт вероятности наступления того или иного события может быть трудным, требующим повышенного внимания. Для облегчения вычислений существуют специальные интернет-порталы. Они предлагают рассчитать исход события даже тем, кто и вовсе не разбирается в теории. Например, allcalc.ru, kontrolnaya-rabota.ru, matburo.ru, math.semestr.ru.


На этих сайтах от пользователей требуется лишь заполнить предлагаемые формы исходными данными и нажать кнопку «Рассчитать». Все калькуляторы совмещают в себе быстроту нахождения ответа и ознакомление с подробным описанием решения.

Теория вероятностей: основы, примеры, задачи

Основы теории вероятностей

В этой статье мы расскажем кратко о том, что такое вероятность события. Дадим определение вероятности, введем понятия зависимых и независимых, совместных и несовместных событий. Объясним, что такое сумма событий и произведение событий.

Больше задач – в статье «Задание 4 Профильного ЕГЭ по математике. Теория вероятностей».

Случайным называется событие, которое невозможно точно предсказать заранее. Оно может либо произойти, либо нет. Теория вероятностей изучает случайные события и их закономерности, а также случайные величины и действия над ними.

Благоприятным мы называем исход, способствующий наступлению данного события.

Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.

Очевидно, что вероятность – величина положительная и не может быть больше единицы.

Например, перед экзаменом вы выучили 3 билета из 20. Вероятность вытянуть счастливый билет равна

Вот две простых задачи из вариантов ЕГЭ, где применяется определение вероятности:

1. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир Иванов высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру Иванову достанется удобное место, если всего в самолёте 300 мест.

В самолете 21+18=30 мест, удобных для Иванова. Всего в самолете 400 мест. Поэтому вероятность того, что пассажир Иванов получит удобное место, равна 30 : 300 = 0,1.

Просто применили определение вероятности.

2. В группе туристов 32 человека. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист К. полетит пятым рейсом вертолёта.

Каждый рейс, в том числе и пятый, перевозит 4 человек из 32. Вероятность полететь пятым рейсом:

Ответ: 0,125.

События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.

Например, вы бросаете монету. «Выпал орел» и «выпала решка» — несовместные события.

Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
Вероятность суммы несовместных событий равна сумме их вероятностей.

Вы бросаете игральную кость. Вероятность выпадения «тройки» равна Вероятность выпадения «шестерки» также равна
Вероятность выпадения числа, которое делится на 3,

Произведение двух событий – термин, означающий, что произошло и одно, и другое событие.

События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.

Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.

3. Говорят, что в старину каждый десятый на Руси был Иван, а каждый двадцатый Петр. Если это верно, то кого было больше: Иванов Петровичей или Петров Ивановичей?

Можно по-разному решать эту задачу, и вероятностный подход здесь тоже применим. Посчитаем вероятности двух событий
Событие А. Случайно выбранного мужчину зовут Иван Петрович
Событие В. Мужчину зовут Петр Иванович.

Вероятность быть Иваном Петровичем для жившего в старину россиянина равна Мы перемножили вероятности того, что наш древнерусский житель – Иван и что его отца зовут Петр.
А вероятность оказаться Петром Ивановичем точно такая же:

4. (ЕГЭ) Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с ве-роятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,32. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Шахматист А. играет две партии, одну – белыми фигурами, другую – черными. События «выиграть белыми» и «выиграть черными фигурами» независимы. Вероятность того, что шахматист А. выиграет оба раза, равна произведению вероятностей выигрышей в каждой партии: 0,5 · 0,32 = 0,16.

5. (ЕГЭ) В классе 26 человек, среди них два друга — Андрей и Сергей. Класс случайным образом разбивают на 2 группы по 13 человек. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.

Пусть Андрей первым занял место в группе (неважно, в какой). И, кроме него, осталось еще 25 человек, среди которых его друг Сергей. Сколько у Сергея шансов оказаться в той же группе, что и Андрей? В группе должно быть 13 человек, то есть Андрей и еще 12. Значит, вероятность того, что Сергей окажется в той же группе, что и Андрей, равна , то есть 0,48.

Следующую задачу можно решить методами комбинаторики – например, с помощью формулы Бернулли. Однако в обычной школе не изучают комбинаторику, и тем не менее эта задача появилась в сборниках для подготовки к ЕГЭ.

6. Монету бросают 10 раз. Во сколько раз событие «Орел выпадет ровно 8 раз» более вероятно, чем событие «Орел выпадет ровно 9 раз»?

Начнем с числа возможных исходов. Если мы бросаем монету, возможных исходов два – орел или решка.
Бросим монету два раза (или две монеты одновременно, все равно). И вот уже 4 возможных исхода:
ОО
ОР
РО
РР
(буквой О обозначен выпавший «орел», буквой «р» — решка.
Каждый следующий бросок монеты увеличивает число возможных исходов в 2 раза (орел или решка).
Для 10 бросков монеты количество возможных исходов, очевидно, равно

По определению, вероятность равна отношению числа благоприятных исходов к общему числу исходов.

Рассмотрим случай, когда орел выпадет ровно 9 раз из 10 бросков монеты. Это значит, что решка выпала ровно 1 раз.

Это могло произойти при первом броске, при втором, при третьем… и, наконец, при десятом, всего 10 благоприятных исходов. Вероятность выпадения решки ровно 1 раз из 10 бросков

Теперь случай, когда орел выпал ровно 8 раз из 10 бросков монеты. Значит, решка выпала ровно 2 раза.

Пронумеруем броски: 1,2,3…10.

Решка могла выпасть в первый и во второй раз. Обозначим эту комбинацию 12.

Могла также выпасть в первый и третий раз, в первый и четвертый… Эти комбинации обозначаем как 13, 14…

Пронумеруем таким образом все благоприятные исходы.

12, 13, 14, 15, 16, 17, 18, 19, 1 10

23, 24, 25, 26, 27, 28, 29, 2 10

34, 35, 36, 37, 38, 39, 3 10

45, 46, 47, 48, 49, 4 10

56, 57, 58, 59, 5 10

67, 68, 69, 6 10

78, 79, 7 10

89, 8 10

9 10
Количество благоприятных исходов равно 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45.

Поделив на , получим, во сколько раз выпадение решки ровно 8 раз более вероятно, чем выпадение решки ровно 9 раз:

Ответ: 4,5.

Разберем какую-нибудь типовую задачу ЕГЭ по теме «Теория вероятностей». Такую, в которой мы рисуем «дерево» возможных исходов.

7. (ЕГЭ) Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Изобразим все возможные исходы.

По условию, купленное в магазине стекло для автомобильной фары оказалось бракованным. Как это могло получиться?

Стекло сделано либо на первой фабрике, либо на второй. Эти события несовместны.

Вероятность того, что стекло с первой фабрики, равна 0,45.

Вероятность того, что стекло сделано на второй фабрике, равна 0,55.

Первая фабрика выпускает 3% бракованных стекол. Значит, с вероятностью 0,03 стекло, произведенное на первой фабрике, бракованное.

Вторая фабрика выпускает 1% бракованных стекол. Значит, с вероятностью 0,01 сделанное на ней стекло бракованное.

Покупатель купил бракованное стекло. Оно могло быть сделано на первой фабрике и оказалось бракованным. Это означает одновременное наступление, или произведение, двух независимых случайных событий – «стекло сделано на первой фабрике» и «стекло бракованное». Вероятность произведения этих двух событий равна

Или другой случай. Стекло могло быть со второй фабрики и также бракованное. Вероятность одновременного наступления этих двух событий равна События «стекло с первой фабрики» и «стекло со второй фабрики» несовместны – они не могут случиться одновременно.
Вероятность суммы несовместных событий равна сумме вероятностей.

Значит, вероятность купить бракованное стекло равна:

Ответ: 0,019.

Следующая задача будет интересна и старшеклассникам, и студентам. В самом деле – как быть, если вы пришли на экзамен, выучив всего 20 билетов из 30? Идти отвечать первым? Или вторым? Или предпоследним? В каком случае вероятность вытянуть билет, который ты выучил, будет наибольшей?

8. Экзамен проходит по следующей схеме: если некоторый билет уже был вытянут, то после ответа экзаменатор откладывает его в сторону. Студент выучил 20 билетов из 30. Когда ему выгоднее идти, первым или вторым, чтобы вероятность вынуть выученный билет была больше?

Назовем билеты, которые студент выучил, «счастливыми».
Если студент пошел отвечать первым, вероятность вытянуть «счастливый» билет равна

Если идти отвечать вторым, возможны два случая:

1) Первый билет, который вытянул кто-то другой, был «счастливым», и тогда «счастливых» билетов теперь 19.

2) Первый билет не был «счастливым», и «счастливых» билетов так и осталось 20.

Нарисуем схему возможных исходов, как всегда делаем в подобных задачах:

Вот наш студент идет отвечать вторым. Вероятность вытянуть «счастливый» билет равна Удивительный ответ! Та же самая вероятность! Значит, неважно, первым или вторым идти отвечать, если ты выучил 20 билетов из 30.

Конечно, это были самые простые задачи по теории вероятностей. Такие, которые встречаются на ЕГЭ по математике.

Продолжение:
Задание 4 Профильного ЕГЭ по математике. Теория вероятностей
Теория вероятностей. Парадокс Монти Холла

Теория вероятностей: формулы, виды событий, алгебра событий и решение задач

Теория вероятностей (разг. сокр. “тервер”) — это раздел математики, который занимается анализом случайных событий. С её помощью можно вычислить вероятность события — оно показывает насколько вероятно, что какое-то событие произойдёт. Это число всегда находится в интервале между 0 и 1, где 0 — означает невозможность, а 1 — оно точно произойдёт (достоверное событие).

Например: в мешке есть 6 шаров: 3 красных, 2 жёлтых и 1 синий. Какова вероятность вытащить красный?

Вероятность считается так: количество красных шаров поделить на общее количество шаров в мешке, т. е. 3/6 = 1/2.

Основные формулы теории вероятностей

Теоремы сложения и умножения вероятностей

ПрименениеФормула
Сложение противоположных событийP(A) + P(A̅) = 1
Сложение несовместных событийP(A + B) = P(A) + P(B)
Сложение совместных событийP(A + B) = P(A) + P(B) — P(AB)
Умножение независимых событийP(AB) = P(A) × P(B)

Основные формулы вычисления

НазваниеФормулаПрименение/Пояснение
Классическое определение вероятностиГде m — количество элементарных событий, благоприятствующих событию А, и n — число всех элементарных событий данного испытания.
Комбинаторика — РазмещениеСоединения, в которых каждое содержит m элементов (без повторений между ними), взятых из числа данных n элементов.
Комбинаторика — Размещения с повторениямиЧисло размещений с повторениями из n элементов по m элементов; соединения могут отличаться только порядком расположения элементов, но из m каких угодно и как угодно повторяющихся элементов.
Комбинаторика — Сочетания

, где 0 ≤ m ≤ n

Соединения, в которых каждое содержит m элементов, взятых из числа данных n элементов; применяется когда порядок безразличен.
ПерестановкиСоединения содержат все n элементов, отличие лишь в порядке их расположения.

Виды событий

В теории вероятностей события бывают невозможными, случайными и достоверными.

Невозможное событие

Это то, которое уже известно, что в ходе испытания НЕ произойдёт, т. е. вероятность данного события равна нулю. Например: при бросании одной игральной кости (один раз), какова вероятность того, что выпадет 7 очков?

Случайное событие

Это событие может произойти или нет, обычно оно именно случайное. Например: при бросании игральной кости, какова вероятность того, что выпадет чётное число очков?

Достоверное событие

Это то, которое в ходе испытания обязательно произойдёт, т. е. вероятность данного события равна 1. Например: при бросании игральной кости, какова вероятность того, что она не останется в воздухе, а упадёт?

Совместные и несовместные события

Несовместные события — это когда появление одного исключает появление другого (в одном и том же испытании). Например: при бросании одной игральной кости выпадет одновременно и «2» и «3»?

Совместные события могут произойти одновременно. Например: два спортсмена плывут одновременно, два студента сдают экзамен.

Противоположные события

Это два несовместимых события, которые образуют полную группу событий (третьего не существует). Например:

  • А — при подбрасывании монеты выпадет орёл, A̅ — при подбрасывании монеты выпадет решка;
  • D — из колоды карт будет извлечена дама, D̅ — из колоды карт будет извлечена не дама.

Алгебра событий

Логическое ИЛИ означает, что нужно произвести операцию сложения (сумма событий). Т. е. считаем возможность или событие А, или событие В, или оба (одновременно).

Логическое И — операция умножения (произведение событий). Т. е. считаем возможность и событие А, и событие В.

Задачи

Пример 1

В классе 27 учеников. Из них:

17 изучали немецкий язык,

6 — английский,

2 — оба языка.

Найти вероятность того, что случайно выбранный ученик изучал хотя бы один язык.

Что мы знаем:

𝑃(N) = 17/27,

𝑃(A) = 6/27,

𝑃(N ∙ A) = 2/27.

Значит вместе это будет:

𝑃(N + A) = 𝑃(N) + 𝑃(A) − 𝑃(N ∙ A) = 17/27 + 6/27 − 2/27 = 21/27 = 7/9.

Пример 2

Лотерейные билеты пронумерованы от 1 до 100. Какова вероятность того, что в выбранном билете будет стоять число больше 40 или чётное число?

Что мы знаем:

P(>40) = 60/100 = 6/10 = 3/5

P(Ch) = ½ = 5/10

Логическое ИЛИ означает, что нам нужно произвести операцию сложения (т. е. сумма событий).

Нам понадобится формула сложения совместных событий P(A + B) = P(A) + P(B) — P(AB).

Для этого нам нужно узнать сколько будет P(>40 . Ch), для этого используем формулу P(AB) = P(A) . P(B).

P(>40 . Ch) = P(>40) . P(Ch) = ⅗ . ½ = 3/10

Теперь можем подставить всё в формулу P(A + B) = P(A) + P(B) — P(AB):

P(>40 + Ch) = P(>40) + P(Ch) — P(>40.Ch) = 6/10 + 5/10 — 3/10 = 8/10 = ⅘.

Пример 3

В финале международного турнира по стрельбе из лука участвовали 8 спортсменов: 3 американца, 1 англичанин, 1 немец, 1 француз и 2 русских. Какова вероятность того, что хотя бы один русский попадёт в тройку лучших, учитывая, что все спортсмены имеют равные условия для получения медали (золотой, серебряной и бронзовой).

Что мы знаем:

Когда в вопросе появляется «хотя бы один», можно «пойти от противного» — мы должны найти вероятность того, что этого не произойдёт (на пьедестале русских не будет), а затем вычесть это из 1.

P (никакой русский не выиграет золото) = 6/8 = 3/4

P (никакой русский не выиграет серебро) = 5/7 (убираем золотую медаль)

P (никакой русский не выиграет бронзу) = 4/6 = 2/3 (убираем золотую и серебряную медали)

P (на пьедестале не будет русских) = 3/4 x 5/7 x 2/3 = 30/84 = 5/14

P (хотя бы один русский на пьедестале) = 1 – 5/14 = 14/14 – 5/14 = 9/14.

Кто придумал теорию вероятностей

Основателями теории вероятностей являются два французских математика Блез Паскаль и Пьер Ферма. В 1654 г. французский писатель Антуан Гомбо (известный как Шевалье де Мере), интересовавшийся игрой и азартными играми, вызвал заинтересованность Паскаля насчёт популярной в то время игры в кости.

Кости бросались 24 раза, а вопрос стоял в том, стоит ли ставить деньги на выпадение хотя бы одной «двойной шестёрки». В то время считалось, что это было выгодно, но последующие расчёты показали прямо противоположное.

Узнайте про Метод Крамера, Интегралы и Корреляции.

теория вероятностей | Определение, примеры и факты

Применение простых вероятностных экспериментов

Фундаментальный компонент теории вероятностей — это эксперимент, который можно повторить, по крайней мере, гипотетически, в по существу идентичных условиях и который может привести к различным результатам в разных испытаниях. Набор всех возможных результатов эксперимента называется «пробелом». Эксперимент по подбрасыванию монеты один раз приводит к пространству выборки с двумя возможными исходами: «орлом» и «решкой».«Бросок двух игральных костей имеет пространство выборки с 36 возможными исходами, каждый из которых может быть идентифицирован с помощью упорядоченной пары ( i , j ), где i и j принимают одно из значений 1, 2, 3, 4, 5, 6 и обозначают лица, изображенные на отдельных кубиках. Важно думать о кубиках как о идентифицируемых (например, по разнице в цвете), чтобы результат (1, 2) отличался от (2, 1). «Событие» — это четко определенное подмножество пространства выборки. Например, событие «сумма лиц, показанных на двух кубиках, равна шести», состоит из пяти исходов (1, 5), (2, 4), (3, 3), (4, 2) и ( 5, 1).

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской.
Подпишитесь сегодня

Третий пример — извлечь n шаров из урны, содержащей шары разного цвета. Общий результат этого эксперимента — набор n , где i -я запись задает цвет шара, полученного при розыгрыше i -го ( i = 1, 2,…, n ) . Несмотря на простоту этого эксперимента, глубокое понимание дает теоретическую основу для опросов общественного мнения и выборочных опросов.Например, люди в группе населения, поддерживающие конкретного кандидата на выборах, могут быть идентифицированы с помощью шариков определенного цвета, лица, поддерживающие другого кандидата, могут быть идентифицированы другим цветом и так далее. Теория вероятностей обеспечивает основу для изучения содержимого урны по выборке шаров, извлеченных из урны; приложение предназначено для получения сведений об электоральных предпочтениях населения на основе выборки, взятой из этого населения.

Еще одно применение простых моделей урн — клинические испытания, призванные определить, лучше ли новое лечение болезни, новое лекарство или новая хирургическая процедура, чем стандартное лечение.В простом случае, когда лечение можно рассматривать как успешное или неудачное, цель клинических испытаний — выяснить, приводит ли новое лечение к успеху чаще, чем стандартное лечение. Больных можно идентифицировать по шарикам в урне. Красные шары — это те пациенты, которых вылечили с помощью нового лечения, а черные шары — это те пациенты, которые не вылечились. Обычно есть контрольная группа, получающая стандартное лечение. Они представлены второй урной с возможно другой долей красных шаров.Цель эксперимента по извлечению некоторого количества шаров из каждой урны — определить на основе образца, в какой урне больше красных шаров. Вариант этой идеи можно использовать для проверки эффективности новой вакцины. Возможно, самым крупным и самым известным примером является испытание вакцины Солка от полиомиелита, проведенное в 1954 году. Оно было организовано Службой общественного здравоохранения США и охватило почти два миллиона детей. Его успех привел к почти полной ликвидации полиомиелита как проблемы здоровья в промышленно развитых частях мира.Строго говоря, эти приложения являются задачами статистики, основу которых составляет теория вероятностей.

В отличие от описанных выше экспериментов, многие эксперименты имеют бесконечно много возможных результатов. Например, можно подбрасывать монету до тех пор, пока «орел» не появится впервые. Количество возможных бросков — n = 1, 2,…. Другой пример — крутить спиннер. Для идеализированного прядильщика, сделанного из отрезка прямой линии без ширины и повернутого в его центре, набор возможных результатов представляет собой набор всех углов, которые конечное положение счетчика образует с некоторым фиксированным направлением, что эквивалентно всем действительным числам в [0 , 2π).Многие измерения в естественных и социальных науках, такие как объем, напряжение, температура, время реакции, предельный доход и т. Д., Производятся в непрерывных масштабах и, по крайней мере, теоретически включают бесконечно много возможных значений. Если повторные измерения на разных предметах или в разное время на одном и том же предмете могут привести к разным результатам, теория вероятностей является возможным инструментом для изучения этой изменчивости.

Из-за их сравнительной простоты сначала обсуждаются эксперименты с конечным пространством выборок.На раннем этапе развития теории вероятностей математики рассматривали только те эксперименты, для которых казалось разумным, исходя из соображений симметрии, предположить, что все результаты эксперимента были «одинаково вероятными». Затем в большом количестве испытаний все исходы должны происходить примерно с одинаковой частотой. Вероятность события определяется как отношение количества случаев, благоприятных для данного события, т. Е. Количества исходов в подмножестве выборочного пространства, определяющего событие, к общему количеству случаев.Таким образом, 36 возможных исходов при броске двух кубиков считаются равновероятными, а вероятность получения «шести» — это количество благоприятных случаев, 5, деленное на 36, или 5/36.

Теперь предположим, что монета была подброшена n раз, и рассмотрим вероятность события «орел не выпадет» при n подбрасываниях. Результатом эксперимента является набор n , k -я запись которого идентифицирует результат k -го броска. Поскольку существует два возможных результата для каждого броска, количество элементов в пространстве выборки составляет 2 n .Из них только один исход соответствует отсутствию орла, поэтому требуемая вероятность равна 1/2 n .

Немного сложнее определить вероятность «не более одной головы». В дополнение к единственному случаю, в котором не происходит никакого выпадения, существует n случаев, в которых выпадает ровно один выпад, потому что он может произойти при первом, втором,… или n -м броске. Следовательно, существует n + 1 случаев, благоприятных для получения не более одной головы, и желаемая вероятность равна ( n + 1) / 2 n .

.

Теория вероятностей

Развитие теории вероятностей

В семнадцатом веке Галилей записал некоторые идеи об играх в кости. Это привело к дискуссиям и статьям, которые сформировали ранние части теории вероятностей.

С тех пор теорию вероятностей внесли и вносили самые разные, но это все еще довольно плохо изученная область математики.

Ставки были популярны еще до того, как была сформирована теория вероятностей. Даже не обладая более высоким уровнем математики, игроки были достаточно хитрыми, чтобы вычислить простые законы вероятности, наблюдая события из первых рук.

Тогда возможности были безграничны в использовании часто сложных и иногда кажущихся противоречивыми законов вероятности.

Первоначально я опубликовал этот сайт еще в 1996 году. Я сделал это потому, что многие люди, с которыми я разговаривал, мало знали об элементарной вероятности, и я часами спорил с ними о довольно простых законах вероятности.Я написал эту страницу в качестве ориентира для людей, чтобы они могли понять некоторые из этих основ, и мне не приходилось тратить годы на попытки доказать это. Я надеюсь, что это обогатит некоторых людей и, надеюсь, позволит им доказать противоречия, которые часто возникают в отношении утверждений о законах вероятности и связанных с ними событий.

Я также надеюсь, что это поможет людям быстро понять основные законы вероятности и, следовательно, избежать всех страданий, которые многим пришлось пережить !! Я прошел путь от неуспевающего до человека, зарабатывающего на жизнь математикой и вероятностью.Я уверен, что если я смогу перейти из ничего туда, где я есть, любой может сделать то же самое.

Большинство вычислений показано в формате электронной таблицы (в основном MS Excel), поскольку люди, которые это читают, скорее всего, будут иметь доступ к этому программному обеспечению.

.

Дискретная математика и теория вероятностей, весна 2015 г.

CS70: Дискретная математика и теория вероятностей, весна 2015 г.

Инструктор и лекция

  • Инструктор: Умеш Вазирани
  • Лекция: вторник и четверг, 17: 00-18: 30, 1 Пиментель
  • Кабинет: 671 Сода Холл
  • Часы работы: понедельник 13: 15-14: 00, вторник 6: 30-19: 15

Программа курса

См. Программу ниже.

Объявления

  • Заключительный экзамен состоится в пятницу, 15 мая, с 11:30 до 14:30 в Wheeler Auditorium и 220 Hearst Gym.Пожалуйста, смотрите этот пост Piazza, чтобы узнать о назначении комнат.

Основная информация

  • Обычно домашние задания публикуются в полдень понедельника и должны быть выполнены в полдень следующего понедельника.
  • Домашнее задание будет оцениваться самостоятельно. Решения будут выпущены в понедельник в 12:30, а самопроверка — в полдень четверга.
  • Будет еженедельно выполняться домашнее задание онлайн, которое поможет вам быстрее выполнить письменное домашнее задание.
  • Среднесрочная 1: 17 февраля, 17-19: 00
  • Midterm 2: 31 марта, 17-19
  • Если вы записаны на курс, вы скоро получите электронное письмо с приглашением зарегистрироваться в учетной записи cs70 piazza.
  • Список GSI и читателей, включая расписание секций и часы работы.
  • Пожалуйста, прочтите полные правила курса.
  • Несколько полезных советов.

Домашнее задание

  • Домашнее задание выпускается в понедельник в 12 часов (полдень) и должно быть выполнено в следующий понедельник в 12 часов (полдень).
  • Чтобы отправить домашнее задание номер N, вы должны загрузить файл с именем hwN.pdf на обучающие серверы и использовать команду: submit hwN
  • Самооценка начинается сразу после выпуска решений, примерно в понедельник в 12:00 (полдень), и заканчивается в четверг в 12:00 (полдень).
  • Чтобы отправить самооценку для домашнего задания номер N, вы должны загрузить файл с именем hwN_grades.txt на обучающие серверы и использовать команду: submit hwN_grades
  • Рекомендуется использовать предоставленные формы оценок для создания файла hwN_grades.txt .

Домашние вечеринки

Times: Пятница 14: 00-17: 00 в Wozniak Lounge (430 Soda Hall)

Каждую неделю в Wozniak Lounge
быть «вечеринкой с домашним заданием».»Это совершенно необязательно. GSI будут
присутствуют посменно, как и некоторые читатели. Ожидается, что студенты
помогайте друг другу и при желании создавайте специальные группы для подбора домашних заданий.
в стиле баскетбольного матча.

Воз — относительно большое пространство, и в хорошую погоду мы
также можно выйти во внутренний дворик снаружи. Но если комната переполнена,
проявите здравый смысл и освободите место для других, уйдя, если вы
можете найти альтернативный источник помощи. Когда в комнате нет
многолюдно, люди из класса могут просто тусоваться, пока
они не беспокоят других.Некоторые социальные игры могут быть
доступный.

Домашние задания

Домашнее задание онлайн

  • Домашнее задание онлайн можно найти на https://cs70sp15.tk.
  • Для входа в систему вам потребуются ваши учетные данные.
  • Если у вас несколько учетных записей Gradescope, используйте тот, который зарегистрирован для CS 70 в самом Gradescope.

Экзамены

Банкноты

Учебника для этого класса нет. Вместо этого есть набор довольно исчерпывающих конспектов лекций.В этом семестре заметки подвергаются серьезному пересмотру, поэтому заметки, опубликованные задолго до лекции, могут измениться ближе к дате. Поэтому не забывайте пересматривать записи после лекции. Примечание 0 — это справочный материал, который вам следует убедиться перед первой лекцией. Каждая заметка может быть рассмотрена в одной или нескольких лекциях.

Разделы обсуждения

Щелкните здесь, чтобы просмотреть список GSI и их разделы для обсуждения.

Вы можете выбрать, в каком разделе обсуждения хотите присутствовать.Все разделы будут охватывать один и тот же основной материал, но разные GSI могут использовать разные подходы к нему.

Обсуждение раздаточного материала

Еженедельный график

Январь

  • 20 января: предложения + кванторы
  • 22 января: Доказательства
  • 27 января: индукция
  • 29 января: индукция (продолжение) + рекурсия

Февраль

  • 3 фев: стабильный брак
  • 5 февраля: Графики, Эйлеров тур
  • 10 февраля: Деревья, гиперкубы
  • 12 февраля: Модульная арифметика
  • 17 февраля: среднесрочный период 1
  • , 19 февраля: Bijection, RSA
  • Срок сдачи: 20 февраля
  • 24 февраля: Ферма, RSA, полиномы
  • 26 февраля: Многочлены, обмен секретами

Март

  • 3 марта: ECC (коды исправления ошибок)
  • 5 марта: Бесконечность + бесчисленность
  • 10 марта: Бессчетность, Годель
  • 12 марта: Подсчет
  • 17 марта: вероятностные пространства
  • 19 марта: условная вероятность
  • Весенние каникулы: 23-27 марта
  • 31 марта: Среднесрочный период 2

Апрель

  • 2 апреля: два приложения-убийцы
  • Срок подачи заявки: 3 апреля
  • , 7 апреля: случайные переменные
  • 9 апреля: Линейность ожиданий, Марков
  • 14.04: Дисперсия, Чебышев
  • , 16 апреля: Некоторые важные дистрибутивы
  • 21 апреля: Непрерывная вероятность
  • 23 апреля: Вывод
  • 28 апреля: Распределение закона Ципфа и степенного закона
  • 30 апреля: Как лгать с вероятностью

Финал: 15 мая, 11: 30-2: 30

Дискретная математика и теория вероятностей служат основой для многих алгоритмов, концепций и методов в области электротехники и компьютерных наук.Например, компьютерное оборудование основано на булевой логике. Индукция тесно связана с рекурсией и широко используется, наряду с другими методами доказательства, в теоретических аргументах, которые имеют решающее значение для понимания основ многих вещей, от алгоритмов до управления, обучения, обработки сигналов, коммуникации и искусственного интеллекта. Аналогично для модульной арифметики и теории вероятностей. CS70 познакомит вас с этими и другими математическими концепциями. К концу семестра вы должны иметь твердое представление о теоретической основе этих концепций и их приложений к общим математическим задачам.Кроме того, вы узнаете, как они применяются к конкретным важным проблемам в области EECS.

Этот курс разделен на два основных блока, каждый из которых познакомит вас с определенной математической концепцией, а также с ее приложениями. Единицы:

1. Доказательства и дискретные конструкции

Доказательства

  • Предложения и количественные показатели
  • Методы доказательства: прямые доказательства, доказательства от противного и противопоставления
  • Индукция в различных формах
  • Проблема стабильного брака

Графики

  • Эйлеровы туры
  • Деревья и гиперкубы

Модульная арифметика

  • Отношения конгруэнтности
  • Алгоритм НОД Евклида и мультипликативные инверсии
  • Криптосистема RSA
  • Полиномы над конечными полями
  • Коды исправления ошибок

Диагонализация и самооценка

  • Мощность бесконечных множеств
  • Доказательство диагонализации Кантора
  • Невозможность вычисления и проблема остановки

2.Теория вероятностей

Счет и дискретная вероятность

  • Комбинаторика и комбинаторные доказательства
  • Области вероятностей и события
  • Условная вероятность и правило Байеса
  • Хеширование
  • Случайные переменные и распределения
  • Ожидание, дисперсия и границы Чебышева
  • Голосование и закон больших чисел
  • Совместные распределения и байесовский вывод

Непрерывная вероятность

  • Непрерывные вероятностные пространства и случайные величины
  • Равномерное и экспоненциальное распределения
  • Нормальные распределения и центральная предельная теорема

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *